
ThoughtWorksThoughtWorks

 NEAL FORD software architect / meme wrangler

 ThoughtWorks

 nford@thoughtworks.com
 3003 Summit Boulevard, Atlanta, GA 30319

 www.nealford.com

 www.thoughtworks.com

 memeagora.blogspot.com

the productive programmer:
mechanics

ThoughtWorks

where did this topic
come from?

?

where did this topic
come from?

where did this topic
come from?

automation
killing distractions

canonicality
applying the dry principle

getting your computer to work harder

focus
doing stuff faster

acceleration

what i cover:

acceleration

typing is faster than navigation

firefox

windows explorer address bar (alt-d)

finder (apple-shift-g)

number-fox plugin

/ searching

o/s accelerators

leopard smart help X

iClip ($$)

why do operating systems have only 1
clipboard with 1 entry????

clcl

jump cut

clipboards

X

mac os x : jumpcut

context switching eats time

pushd pushes a directory on the stack

popd pops it back off

there and back

C:\temp>pushd \MyDocuments\Documents\dev\haskell

C:\MyDocuments\Documents\dev\haskell>dir
02/13/2006 12:12 AM <DIR> .
02/13/2006 12:12 AM <DIR> ..
02/13/2006 12:12 AM <DIR> nfjs_functionallangs_haskell
 0 File(s) 0 bytes
 3 Dir(s) 11,743,178,752 bytes free

C:\MyDocuments\Documents\dev\haskell>popd

pushd/popd

command prompt here power toy

graphical explorers better for some things....

...command line better for others

bash here (cygwin)

command prompts

cmd prompt explorer bar

path finder X

how many of you have
written an application for
heads-down data entry

personnel?

when coding, always prefer
keyboard to mouse

pair programmer

make yourself use the shortcut even if you’ve
gotten there another way

have someone/something pester you about it

mousefeed for eclipse

key promoter plug-in for intellij

learning shortcuts

repeat them to yourself

flash cards

learning shortcuts

all our
hierarchies
are too deep:

 file system
 packages

goto class

goto class: pattern of
capital letters

introduce variable

introduce variable redux

escalating
selection

goto symbol

some choice shortcuts

intelliJ eclipse

goto class ctrl-n ctrl-shift-t

introduce variable ctrl-alt-v alt-shift-l
escalating selection ctrl-w alt-shift-up
recently edited files ctrl-e n/a (ctrl-e)
symbol list alt-ctrl-shift-n ctrl-o
incremental search alt-f3 ctrl-j

learn the language of your template engine

all major ide’s and coding text editors

parameter substitution, default values, repeating
values

bash for textmate/e editor

velocity in intellij

live templates

i
n
t
e
l
l
i
j

t
e
m
p
l
a
t
e
s

every time you type
something for the 3rd time,

templatize it

textexpander

live templates at the o/s level

auto-hot key

typinator

key macro tools

X

textexpander

don’t type the same
commands over and over

focus

...sitting immediately in front of you

get a comfortable chair!

dual monitors...

good keyboard

administrator privilege for the o/s

simple stuff

how many people here work in cube land?

modern office environments are terrible for
knowledge workers

too much out of context noise

insidious distractions

war rooms

in flow, michael csikszentmihalyi describes flow
state

in the humane interface, jef raskin describes locus
of attention

anything that happens outside your locus of
attention breaks flow

time disappears

total concentration

locus of attention

killing balloon tips

automatically makes your background dark
after a set time

jedi concentrate

doodim

screen dimmers

X

the higher the level of
concentration, the denser

the ideas

turn off instant messaging

turn off notifications

don’t keep email open

create office “quiet time”

put on headphones

the easy stuff

focus techniques

package/namespace

all developer hierarchies are too deep

file system

what worked well with 20 mb hard drives fails
with 200 gb

documentation

search > navigation

google desktop search

built into modern operating systems

retro-fittable in older ones

larry’s “any text file” indexer

desktop search

replace file hierarchy
navigation with search

rooted view == project explorer

specialized explorer view

especially good for directory-based version
control

C:\WINDOWS\explorer.exe /e,/root,c:\work\project

create a shortcut:

rooted views

virtual desktop manager power toy

virtual desktops allow you multiple isolated
environments

bind applications to desktops

spaces (in leopard)

virtue desktops (in tiger)

use virtual desktops

X

canonicality

DRY says that every piece of system knowledge should have
one authoritative, unambiguous representation. Every piece of
knowledge in the development of something should have a

single representation. A system's knowledge is far broader than
just its code. It refers to database schemas, test plans, the build

system, even documentation.
the pragmatic programmer - andy hunt, dave thomas

decide on the canonical representation

object-relational mapping is one of the most
common dry violations

database schema + xml configuration + pojo > 1

generate the others

dry o/r

the scenario

DDL

<xml>

 <entity>

 ...

 </entity>

</xml>

class Person {

 int id;

 double salary;

 . . .

}

where’s the information?

canonical
representation

DDL

<xml>

 <entity>

 ...

 </entity>

</xml>

class Person {

 int id;

 double salary;

 . . .

}

the target

build event sql map

generated sql map

step 2: class builder

canonical
representation

DDL

<xml>

 <entity>

 ...

 </entity>

</xml>

class Person {

 int id;

 double salary;

 . . .

}

dry documentation

dry diagrams

open source schema diagrammer

the requirement: entity-relationship diagrams
for each iteration

schemaspy

generates acceptable html

written in java

dry schemas

dry schemas

automation

version control (!)

one-command build

continuous integration

documentation

obvious automatables

don’t build what you don’t
have to build

live cd or ubuntu installation

open source project from ThoughtWorks

infrastructure in a box

buildix

trac

subversion

cruisecontrol

mingle

buildix parts

subverting other tools

allows you to automate debugging “wizard”-
style web applications

open source tool for user acceptance testing of
web applications

includes a side-project called selenium ide

...but it never is!

you always think “this is the last time”...

selenium

selenium defines an interaction api for web
applications

record your interaction the 1st time you walk
through the page

literally cuts hours off debugging time

have your q/a department record bug
discoveries

automated interaction

don’t spend time doing by
hand what you can automate

build your own tools

build shims & jigs

you almost never do anything just once

work like a craftsman, not a laborer

...but you build assets

building a tool takes a little longer than brute
force...

adding new files to subversion repository

tortoise (on windows), but with limits

bash-fu

svnAddNew
svn st | grep '^\?' | tr '^\?' ' ' |
sed 's/ []*//' | sed 's/[]/\\ /g' | xargs svn add

svn st get svn status (new files start with “?”)

grep '^\?' find all new files

tr '^\?' ' ' translate the “?” into a space

sed 's/[]*//' substitute spaces to nothing

sed 's/[]/\\ /g' escape embedded spaces

xargs svn add pipe the improved arguments into svn

by hand?!?

the problem: 2 gb of log files / week

need to know the count of each exception type

automate with a bash script

more bash-fu

get counts of each
exception

get all exception types from log file sort them

get unique
list

automating com

use a real language for scripting

examples in lots of different languages/tools

which one do I use for this problem?

scripting rationale

“we can do it by hand in 10 minutes...”

the problem: split a 38,000 line sql file into
1000 line chunks

each chunk must be syntactically correct

after 50 minutes:

automate instead

sql splitter

it “accidentally” became an important part of
our project

it took us 5 times longer to automate it

we’ve had to do it numerous times since

...so that we could write unit tests

using a real language allowed us to refactor it...

time spent automating

if you start by treating it as a 1st class problem,
you’ll build better solutions

allow throw-aways to grow into assets

allows unit testing, refactoring, ide support

using real languages

squanders focus

solving problems by hand makes you dumber

steals concentration

figure out clever ways to solve problems

automating makes you smarter

time savings

justifying automation

decide if you want to go forward

set a reasonable time to see if it’s possible

evaluate at the end of the box

or abandon the effort

or create another time box

timebox

automation is about

how long does it take now X # of times we
must do it?

what are the consequences of doing it wrong 1
time?

risk mitigation

time savings

analyze the r.o.i.

don’t shave yaks!

ThoughtWorks

This work is licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 2.5 License.

http://creativecommons.org/licenses/by-nc-sa/2.5/

questions?

please fill out the session evaluations
slides & samples available at nealford.com

 NEAL FORD software architect / meme wrangler

 ThoughtWorks

 nford@thoughtworks.com
 3003 Summit Boulevard, Atlanta, GA 30319

 www.nealford.com

 www.thoughtworks.com

 memeagora.blogspot.com

resources

ThoughtWorks

© 2008, Neal Ford

Published by O’Reilly Media

The Productive Programmer

Photos by Candy Ford

ISBN: 978-0-596-51978-0

