
blog.adam-bien.com

EJB 3.1 - Killing The Top
Eleven Myths, Tales and
Biases

blog.adam-bien.com

About me

Expert Group Member (jcp.org) of Java EE 6, EJB 3.1, Time and Date
and JPA 2.0

Java Champion,Netbeans Dream Team Member, (JavaONE) speaker,
freelancer, consultant and author: 7 German books + working on
“Productive Java EE – Rethinking The Patterns”

Trainer, Developer and Architect (since JDK 1.0)

Project owner/committer: http://greenfire.dev.java.net, http://
p4j5.dev.java.net, http://fishfarm.dev.java.net/

http://p4j5.dev.java.net
http://p4j5.dev.java.net
http://p4j5.dev.java.net
http://p4j5.dev.java.net

blog.adam-bien.com

1. EJBs Are Heavyweight

blog.adam-bien.com

EJBs Are Heavyweight

Configuration is mainly gone, because of conventions...
(there was no XML in my last projects except
persistence.xml)

EJB 3 are just annotated Java classes (if you love XML
you can even use just Deployment Descriptors instead of
annotation)

Container “services” like transactions, security,
concurrency or state are implemented with aspects (often
realized with dynamic proxies)

blog.adam-bien.com

EJBs Are Heavyweight

"POJOs" are just JavaBeans maintained by another
container, using similar techniques as EJB 3.1

EJB 3 containers are surprisingly small. Glassfish v3 EA
comes with two jars (688kB + 8kB = 796kB). The EJB 3
container is an OSGI bundle...

The whole EJB 3.1 API is about 47 kB.

blog.adam-bien.com

2. EJBs Are Hard To Test

blog.adam-bien.com

EJBs Are Hard To Test

To test your EJBs outside the container, you will need to
have the EJB 3.1 annotations available in your classpath.

In recent projects we deployed EJB 3.0 components
directly to Netbeans RCP application. We could start and
test the application without even having an application
server involved.

If you can start EJBs outside the container, you can start
them in a unit test as well...

blog.adam-bien.com

EJBs Are Hard To Test

Create the EntityManager and fetch the EntityTransaction
in the superclass...

blog.adam-bien.com

EJBs Are Hard To Test

...inherit from it. Just inject / mock the dependencies by
hand (EJB 3.0)

blog.adam-bien.com

EJBs Are Hard To Test

EJB 3.0 are just annotated POJOs - you can test them as
such.

Transaction / Security can be harder to test - but
integration tests are better for that purpose.

In EJB 3.1 the testing experience is even better with:

blog.adam-bien.com

3. EJBs Are Not Portable

blog.adam-bien.com

EJBs Are Not Portable

J2EE 1.4 was underspecified :-) - EJB 3.X / JPA specs
cover more real world stuff (locking, optimistic
concurrency etc.).

Vendor specific deployment descriptor were painful for
migration - they are basically gone.

In most cases a EJB-JAR module is nothing but a JAR
without any XML descriptors (neither ejb-jar.xml nor
vendor specific)

Vendor specific annotations are not needed to develop a
Java EE application.

There is NOTHING vendor specific in an EAR. The
portability is really good.

blog.adam-bien.com

4. EJBs Are Not Extensible

blog.adam-bien.com

EJBs Are Not Extensible

How to inject a Guice component into an EJB 3:

blog.adam-bien.com

EJBs Are Not Extensible

The Guice (fluent) configuration:

blog.adam-bien.com

EJBs Are Not Extensible

You only need an interceptor:

blog.adam-bien.com

EJBs Are Not Extensible

Interceptors are able to access the Bean instance directly.

Having an instance available - you can manipulate it;
inject members use reflection to invoke methods, or set
fields...

It is very interesting for the integration of existing “legacy”
IoC frameworks :-)

blog.adam-bien.com

5. EJBs Are Slow

blog.adam-bien.com

EJBs Are Slow

The throughput of the EJB 3 solution was 2391
transactions/second. The slowest method call took 7
milliseconds. The average wasn't measurable. Please
keep in mind that in every request two session beans
were involved - so the overhead is doubled.

POJO: The throughput of the POJO solution was 2562
requests/second (request - there are no transactions
here). The slowest method call took 10 ms.

The difference is 171 requests / seconds, or 6.6%

blog.adam-bien.com

6. EJBs Are Not Scaleable

blog.adam-bien.com

EJBs Are Not Scalable

EJB (1.0, 1.1, 2.0, 2.1, 3.0 and 3.1) are always executed
in a dedicated thread - they appear as single threaded for
the developer.

For every thread (=user request, transaction) a new EJB
instance is created (or reused from pool) - there is
actually no shared state, except you access singletons,
files etc. - which is not allowed.

Actually the spec even prohibits the usage of the
synchronization primitives and threading functionality
inside EJBs.

blog.adam-bien.com

EJBs Are Not Scalable

Furthermore the programming model is rather procedural
(or if you will "service oriented") - so in the @Stateless
Session Beans the methods process some input data and
give it back to the caller.

Even the @Stateful Session Beans do not brake the rule -
the container still prohibits concurrent access to the
@Stateful instance.

Because a @Stateful Session Bean can be only executed
in a single thread - you do not have (you shouldn't!) care
about the threading either.

blog.adam-bien.com

EJBs Are Not Scalable

If you acess the JPA-persistence - the container
synchronizes the data for you. Every transaction receives
a copy of the JPA-entity (it is often implemented in this
way), so nothing bad can happen even in this case.

Every thread is (hopefully) executed in a single core. So if
you keep the transactions short, and do not "hack" the
EJBs accessing static variables or singletons - you are on
the bright side :-).

blog.adam-bien.com

EJBs Are Not Scalable

Every bean is executed in a (pooled) thread.

Bean instances are bound to the thread for the duration of
the execution.

Load balancing works perfectly - you can start as many
servers as you like to. Even without having a cluster...

For SFSB “session affinity” can improve the scaleability
significantly.

Programming restrictions do encourage “functional
programming” (no shared state, blocking, threads)

blog.adam-bien.com

EJBs Are Not Scalable (some load test results)

Environment:
Glassfish v2ur2 on Linux, Clustered, a 4 way, Intel based machine and JDK 1.5 (JDK
1.6 would be better, but was not available in this case). Two load-generators ran
remotely (via IIOP, standard EJB 3 client), each with 50 virtual users. Settings: -Xmx
to 512m: no further tuning was performed.

Configuration:
CRUD application as load generator, without think-time, and almost empty database,
just to stress the appserver as much as possible.

Result:
250 - 500 Transactions / second (we weren't alone on the machine :-().

blog.adam-bien.com

7. EJBs Are Too Complex

blog.adam-bien.com

EJBs Are Too Complex

Java EE is distributed and concurrent platform per
definition.

It mainly abstracts already existing products (messaging,
EIS, relational databases)

Distributed programming with shared state is always a
challenge.

In the Cloud Computing / SOA era non-functional
requirements like: monitoring (JMX), management, fail-
over or elasticity become more and more important.

Think about the ratio between the essential and
accidential complexity...

blog.adam-bien.com

8. EJBs Are Hard To Integrate
With Web Frameworks (and

POJOs)

blog.adam-bien.com

Wicket

blog.adam-bien.com

DI in Wicket

Configuration in Wicket application required:
import
org.wicketstuff.javaee.injection.JavaEEComponentInjector;

import org.apache.wicket.protocol.http.WebApplication;

public class WicketApplication extends WebApplication{

 @Override

 protected void init() {

 addComponentInstantiationListener(

new JavaEEComponentInjector(this));

 }

}

blog.adam-bien.com

DI in Wicket

Extension of web.xml:

 <ejb-local-ref>

 <ejb-ref-name>profileService</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <local-home/>

 <local>....facade.ProfileService</local>

 </ejb-local-ref>

blog.adam-bien.com

DI in Wicket

…then EJB 3.X can be just injected into pages:
import org.apache.wicket.markup.html.WebPage;

public class ProfileView extends WebPage {

 @EJB(name = "profileService")

 private ProfileService profileService;

 @EJB(name = "dealerService")

 private DealerService dealerService;

blog.adam-bien.com

JSF

blog.adam-bien.com

JSF

EJB 3 injection is even easier:

1. No additional declaration in web.xml

2. No programmatic configuration needed.

3. Just inject SLSB into request-scoped and SFSB into
session-scoped backing beans

public class StatefulBackingBean{

 @EJB

 private OrderGateway orderGateway;

}

blog.adam-bien.com

Servlets

blog.adam-bien.com

Servlets

Same story as in JSF:

1. No additional declaration in web.xml

2. No programmatic configuration needed.

3. Just inject SLSB into the servlet and lookup SFSB
and put them into the HTTPSession

public class LoadServlet extends HttpServlet{

 @EJB

 private PersonService service;

}

blog.adam-bien.com

Servlets

Servlets can be used to implement simple load test
scenarios for the EJB layer:

• Inject your bean into the servlet

• Implement the test-flow in doGet method

• Use e.g. http://jakarta.apache.org/jmeter to generate
the load

• Use JConsole / VisualVM to monitor server

• Watch the resource consumption and throughput.

blog.adam-bien.com

...and POJOs (into EJB 3)

blog.adam-bien.com

Legacy POJO injection

• Not everything is an EJB

• Sometimes it is convenient to inject „legacy
POJOs“

• But we do not always have the source for the
legacy POJO…

blog.adam-bien.com

Legacy POJO injection

blog.adam-bien.com

Legacy POJO injection

blog.adam-bien.com

...and POJOs (into EJB 3.1)

blog.adam-bien.com

...and POJOs (into EJB 3.1)

Servlet in WAR:

blog.adam-bien.com

...and POJOs (into EJB 3.1)

...and some XML:

blog.adam-bien.com

9. EJBs Are Hard To
Configure

blog.adam-bien.com

EJBs Are Hard To Configure

EJB 3.0 Session Beans can be configured using XML in
different ways.

You can use dependency injection, as well as
programmatic lookup for this purpose.

The dependency injection approach allows you the
definition of default values in the bean class, which can
be overwritten in the deployment descriptor (the XML-
file).

blog.adam-bien.com

EJBs Are Hard To Configure

Injecting variables:

blog.adam-bien.com

EJBs Are Hard To Configure

...and the configuration:

blog.adam-bien.com

EJBs Are Hard To Configure

The ejb-jar.xml isn’t beautiful - but portable.

The verbose syntax will improve in EJB 3.1

Think about the Guice integration - there are no limits
here...

blog.adam-bien.com

10. EJBs Are Hard To Migrate

blog.adam-bien.com

EJBs Are Hard To Migrate

A legacy EJB 2:

blog.adam-bien.com

EJBs Are Hard To Migrate (deployment descriptor)

blog.adam-bien.com

EJBs Are Hard To Migrate

After a “smooth” migration, with minimal amount of
changes:

blog.adam-bien.com

EJBs Are Hard To Migrate

EJB 3 are compatible with EJB 2

You can deploy EJB 2 beans as EJB 3

You can then inject EJB 2 instances straight into EJB 3

After this step you can just delete the XML etc.

Is up to you, whether you would like to delete the
superfluous artifacts like home-, remote interfaces.

XML deployment descriptors are no more needed after
the migration...

blog.adam-bien.com

11. EJBs Are Hard To
Develop

blog.adam-bien.com

EJBs Are Hard To Develop

Simplest possible EJB 3.1:

@Stateless
public class SimpleSample{

 public void doSomething() { /*business logic*/ }

}

blog.adam-bien.com

EJBs Are Hard To Develop

How to compile:
You will need the the EJB 3.0 / 3.1 API in the classpath, or at least the

@Stateless annotation.

How to deploy:
Just JAR the class and put the JAR into e.g: [glassfishv3-prelude-

b23]\glassfish\domains\domain1\autodeploy

How to use:
import javax.ejb.EJB;

public class MyServlet extends HttpServlet{

@EJB

private SimpleSample sample;

}

blog.adam-bien.com

Questions?

blog.adam-bien.com

Thank you!

blog.adam-bien.com

Interested in „highend“ trainings, coaching, consulting?
…just send me an email => abien@adam-bien.com

