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“If your application doesn't scale, it's your fault not mine.” 
– Rasmus Lerdorf (@rasmus)

http://twitter.com/rasmus
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Who?

● @rowan_m

● Software Engineer
& Team Lead

● @ibuildings & 
@techportal

http://twitter.com/rowan_m
http://twitter.com/ibuildings
http://twitter.com/techportal
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Why?

● I've built small apps
● and pretty large ones

● I've seen massive 
over-engineering

● and platforms that 
cannot scale
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TDD Principles

● Write only enough 
code to pass the test

● Do not over-engineer

● Don't give away work 
for free!
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Build for now

● Don't be afraid to 
throw code away

● XP's spikes

● Take advantage of 
current tech. 
without tying 
yourself to it
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Who are your users?

● Lots of short visits?
● Anonymous or 

session-based?
● Long, complex 

interactions?
● Subscribers or

free users?
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Monitor and Analyse

● Predict usage 
patterns

● Plan for peaks and 
troughs

http://community.plus.net/blog/2011/10/24/a-record-setting-manchester-derby/

http://community.plus.net/blog/2011/10/24/a-record-setting-manchester-derby/
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Profiling

● You do not know 
what is slow

● Ensure you measure 
more than just code!
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Profiling

● PHP - Xdebug – Derick Rethans (@derickr)
● Kcachegrind, Webgrind, etc.

● PHP – XHProf
● JavaScript – Firebug
● JavaScript – Venkman

● General page display - YSlow

http://twitter.com/derickr
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Profiling

● CPU Load – top & /proc/loadavg
● Disk IO – iotop
● Memory – free
● Network – netstat

● Monitoring – watch & time
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Profiling under load

● Code bottlenecks !=
Platform bottlenecks

● Test in production,
if possible

● Use multiple VMs 
(Vagrant can help 
automate this)

● Use siege & ab
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Finding bottlenecks

Right
● Database
● Disk IO
● External services
● Application work

Wrong
● Autoloaders
● Config files
● Logging
● Object instantiation
● Frameworks

Ask Jo (@juokas)
about Doctrine!

http://twitter.com/juokas
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Tell users it's slow

● User experience !=
Raw speed

● Keep the UI 
responsive

● Set expectations

● Adapt to changes
(@blongden)

http://twitter.com/blongden
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Fail gracefully

● Actively choose
to time-out

● Prioritise 
core/profitable 
functionality

● Have a
BIG RED BUTTON
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Separate functionality

Admin
● Different users ==

diff. requirements

● No cache
● “Master” storage

● Security

Batch
● Not time critical
● CPU/RAM hungry

● nice / ionice
● Network rate limiting

● Read only?
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Configure hardware correctly

● What is required for
1 request?

● How many
concurrent requests?

● Is it a linear scale?

● Ask your
hosting company
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Obey the “Law of Demeter”

● Talk to your friends, 
don't talk to 
strangers

● Promotes
loose coupling
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Obey the “Law of Demeter”

Good
● $person->requestPayment($amount);

Bad
● $wallet = $person->getWallet();
● $wallet->getMoney($amount);
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Obey the “Law of Demeter”

Good
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Create immutable objects

● Objects that cannot change after creation
● Copy On Write (COW -  �  unicode cow← )
● More memory-hungry, but easy to roll back
● Value objects should be immutable

● Think of them like a response from a service



  

Identify “single server” factors



  

Identify “single server” factors

● File uploads / user content



  

Identify “single server” factors

● File uploads / user content
● IP restrictions / server access



  

Identify “single server” factors

● File uploads / user content
● IP restrictions / server access
● Licensing?
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Create services

Your API should be:
● Independent of 

application state
● Loosely coupled
● Accepting/returning 

immutable objects
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Use caches

● REST-ful services 
over HTTP let you 
cache easily

● Internal caching is 
trickier, but “out-of-
the-box” with most 
frameworks

Proxy other people's services through your own cache!
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Use queues

● Full blown job server:
Gearman

● AMQP 
implementation:
RabbitMQ

● Light-weight sockets:
0MQ
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Availability
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Use the right storage

Availability

Partitioning

Consistency

Enforced consistency
(RDBMS)

Eventual consistency
(NoSQL)
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Scale your storage

● Master/slave 
replication

● Table partitioning
● Row partitioning

● rsync
● NFS
● GlusterFS
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Now you can use the cloud

● Full service
orchestra.io

● Infrastructure mgmt.
Scalr

● Manually
$your_code_here

● Automate!
Chef & Puppet
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Review

● Start with only what 
you need

● Identify the 
problems

● Pull the problem out 
to a service

● Distribute



  

Thank you!

● Feedback:

http://joind.in/6324

● Photos & Transformers:
Nina Merewood

● Legal?
Takara & Hasbro

● ElePHPant smuggling:
Johannes Schlüter (@phperror)

● Vintage photo nonsense:
http://pixlr.com/o-matic/

http://joind.in/6324
http://twitter.com/phperror
http://pixlr.com/o-matic/
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