

Sensible Scaling

Rowan Merewood

Sensible Scaling

Rowan Merewood

“If your application doesn't scale, it's your fault not mine.”
– Rasmus Lerdorf (@rasmus)

http://twitter.com/rasmus

Who?

Who?

● @rowan_m

http://twitter.com/rowan_m

Who?

● @rowan_m

● Software Engineer
& Team Lead

http://twitter.com/rowan_m

Who?

● @rowan_m

● Software Engineer
& Team Lead

● @ibuildings &
@techportal

http://twitter.com/rowan_m
http://twitter.com/ibuildings
http://twitter.com/techportal

Why?

Why?

● I've built small apps

Why?

● I've built small apps
● and pretty large ones

Why?

● I've built small apps
● and pretty large ones

● I've seen massive
over-engineering

Why?

● I've built small apps
● and pretty large ones

● I've seen massive
over-engineering

● and platforms that
cannot scale

TDD Principles

TDD Principles

● Write only enough
code to pass the test

TDD Principles

● Write only enough
code to pass the test

● Do not over-engineer

TDD Principles

● Write only enough
code to pass the test

● Do not over-engineer

● Don't give away work
for free!

Build for now

Build for now

● Don't be afraid to
throw code away

Build for now

● Don't be afraid to
throw code away

● XP's spikes

Build for now

● Don't be afraid to
throw code away

● XP's spikes

● Take advantage of
current tech.
without tying
yourself to it

Who are your users?

Who are your users?

● Lots of short visits?

Who are your users?

● Lots of short visits?
● Anonymous or

session-based?

Who are your users?

● Lots of short visits?
● Anonymous or

session-based?
● Long, complex

interactions?

Who are your users?

● Lots of short visits?
● Anonymous or

session-based?
● Long, complex

interactions?
● Subscribers or

free users?

Monitor and Analyse

http://community.plus.net/blog/2011/10/24/a-record-setting-manchester-derby/

http://community.plus.net/blog/2011/10/24/a-record-setting-manchester-derby/

Monitor and Analyse

● Predict usage
patterns

http://community.plus.net/blog/2011/10/24/a-record-setting-manchester-derby/

http://community.plus.net/blog/2011/10/24/a-record-setting-manchester-derby/

Monitor and Analyse

● Predict usage
patterns

● Plan for peaks and
troughs

http://community.plus.net/blog/2011/10/24/a-record-setting-manchester-derby/

http://community.plus.net/blog/2011/10/24/a-record-setting-manchester-derby/

Profiling

Profiling

● You do not know
what is slow

Profiling

● You do not know
what is slow

● Ensure you measure
more than just code!

Profiling

Profiling

● PHP - Xdebug – Derick Rethans (@derickr)
● Kcachegrind, Webgrind, etc.

http://twitter.com/derickr

Profiling

● PHP - Xdebug – Derick Rethans (@derickr)
● Kcachegrind, Webgrind, etc.

● PHP – XHProf

http://twitter.com/derickr

Profiling

● PHP - Xdebug – Derick Rethans (@derickr)
● Kcachegrind, Webgrind, etc.

● PHP – XHProf
● JavaScript – Firebug

http://twitter.com/derickr

Profiling

● PHP - Xdebug – Derick Rethans (@derickr)
● Kcachegrind, Webgrind, etc.

● PHP – XHProf
● JavaScript – Firebug
● JavaScript – Venkman

http://twitter.com/derickr

Profiling

● PHP - Xdebug – Derick Rethans (@derickr)
● Kcachegrind, Webgrind, etc.

● PHP – XHProf
● JavaScript – Firebug
● JavaScript – Venkman

● General page display - YSlow

http://twitter.com/derickr

Profiling

● CPU Load – top & /proc/loadavg

Profiling

● CPU Load – top & /proc/loadavg
● Disk IO – iotop

Profiling

● CPU Load – top & /proc/loadavg
● Disk IO – iotop
● Memory – free

Profiling

● CPU Load – top & /proc/loadavg
● Disk IO – iotop
● Memory – free
● Network – netstat

Profiling

● CPU Load – top & /proc/loadavg
● Disk IO – iotop
● Memory – free
● Network – netstat

● Monitoring – watch & time

Profiling under load

Profiling under load

● Code bottlenecks !=
Platform bottlenecks

Profiling under load

● Code bottlenecks !=
Platform bottlenecks

● Test in production,
if possible

Profiling under load

● Code bottlenecks !=
Platform bottlenecks

● Test in production,
if possible

● Use multiple VMs
(Vagrant can help
automate this)

Profiling under load

● Code bottlenecks !=
Platform bottlenecks

● Test in production,
if possible

● Use multiple VMs
(Vagrant can help
automate this)

● Use siege & ab

Finding bottlenecks

Finding bottlenecks

Right Wrong

Finding bottlenecks

Right
● Database

Wrong

Finding bottlenecks

Right
● Database
● Disk IO

Wrong

Finding bottlenecks

Right
● Database
● Disk IO
● External services

Wrong

Finding bottlenecks

Right
● Database
● Disk IO
● External services
● Application work

Wrong

Finding bottlenecks

Right
● Database
● Disk IO
● External services
● Application work

Wrong
● Autoloaders

Finding bottlenecks

Right
● Database
● Disk IO
● External services
● Application work

Wrong
● Autoloaders
● Config files

Finding bottlenecks

Right
● Database
● Disk IO
● External services
● Application work

Wrong
● Autoloaders
● Config files
● Logging

Finding bottlenecks

Right
● Database
● Disk IO
● External services
● Application work

Wrong
● Autoloaders
● Config files
● Logging
● Object instantiation

Finding bottlenecks

Right
● Database
● Disk IO
● External services
● Application work

Wrong
● Autoloaders
● Config files
● Logging
● Object instantiation
● Frameworks

Finding bottlenecks

Right
● Database
● Disk IO
● External services
● Application work

Wrong
● Autoloaders
● Config files
● Logging
● Object instantiation
● Frameworks

Ask Jo (@juokas)
about Doctrine!

http://twitter.com/juokas

Tell users it's slow

Tell users it's slow

● User experience !=
Raw speed

Tell users it's slow

● User experience !=
Raw speed

● Keep the UI
responsive

Tell users it's slow

● User experience !=
Raw speed

● Keep the UI
responsive

● Set expectations

Tell users it's slow

● User experience !=
Raw speed

● Keep the UI
responsive

● Set expectations

● Adapt to changes
(@blongden)

http://twitter.com/blongden

Fail gracefully

Fail gracefully

● Actively choose
to time-out

Fail gracefully

● Actively choose
to time-out

● Prioritise
core/profitable
functionality

Fail gracefully

● Actively choose
to time-out

● Prioritise
core/profitable
functionality

● Have a
BIG RED BUTTON

Separate functionality

Separate functionality

Admin Batch

Separate functionality

Admin
● Different users ==

diff. requirements

Batch

Separate functionality

Admin
● Different users ==

diff. requirements

● No cache

Batch

Separate functionality

Admin
● Different users ==

diff. requirements

● No cache
● “Master” storage

Batch

Separate functionality

Admin
● Different users ==

diff. requirements

● No cache
● “Master” storage

● Security

Batch

Separate functionality

Admin
● Different users ==

diff. requirements

● No cache
● “Master” storage

● Security

Batch
● Not time critical

Separate functionality

Admin
● Different users ==

diff. requirements

● No cache
● “Master” storage

● Security

Batch
● Not time critical
● CPU/RAM hungry

Separate functionality

Admin
● Different users ==

diff. requirements

● No cache
● “Master” storage

● Security

Batch
● Not time critical
● CPU/RAM hungry

● nice / ionice

Separate functionality

Admin
● Different users ==

diff. requirements

● No cache
● “Master” storage

● Security

Batch
● Not time critical
● CPU/RAM hungry

● nice / ionice
● Network rate limiting

Separate functionality

Admin
● Different users ==

diff. requirements

● No cache
● “Master” storage

● Security

Batch
● Not time critical
● CPU/RAM hungry

● nice / ionice
● Network rate limiting

● Read only?

Configure hardware correctly

Configure hardware correctly

● What is required for
1 request?

Configure hardware correctly

● What is required for
1 request?

● How many
concurrent requests?

Configure hardware correctly

● What is required for
1 request?

● How many
concurrent requests?

● Is it a linear scale?

Configure hardware correctly

● What is required for
1 request?

● How many
concurrent requests?

● Is it a linear scale?

● Ask your
hosting company

Aim for services

Aim for services

Obey the “Law of Demeter”

Obey the “Law of Demeter”

● Talk to your friends,
don't talk to
strangers

Obey the “Law of Demeter”

● Talk to your friends,
don't talk to
strangers

● Promotes
loose coupling

Obey the “Law of Demeter”

Good

Bad

Obey the “Law of Demeter”

Good
● $person->requestPayment($amount);

Bad

Obey the “Law of Demeter”

Good
● $person->requestPayment($amount);

Bad
● $wallet = $person->getWallet();
● $wallet->getMoney($amount);

Obey the “Law of Demeter”

Good

Bad

Obey the “Law of Demeter”

Good

Bad

Obey the “Law of Demeter”

Good

Bad

Create immutable objects

Create immutable objects

● Objects that cannot change after creation

Create immutable objects

● Objects that cannot change after creation
● Copy On Write (COW - � unicode cow←)

Create immutable objects

● Objects that cannot change after creation
● Copy On Write (COW - � unicode cow←)
● More memory-hungry, but easy to roll back

Create immutable objects

● Objects that cannot change after creation
● Copy On Write (COW - � unicode cow←)
● More memory-hungry, but easy to roll back
● Value objects should be immutable

Create immutable objects

● Objects that cannot change after creation
● Copy On Write (COW - � unicode cow←)
● More memory-hungry, but easy to roll back
● Value objects should be immutable

● Think of them like a response from a service

Identify “single server” factors

Identify “single server” factors

● File uploads / user content

Identify “single server” factors

● File uploads / user content
● IP restrictions / server access

Identify “single server” factors

● File uploads / user content
● IP restrictions / server access
● Licensing?

Create services

Create services

Your API should be:

Create services

Your API should be:
● Independent of

application state

Create services

Your API should be:
● Independent of

application state
● Loosely coupled

Create services

Your API should be:
● Independent of

application state
● Loosely coupled
● Accepting/returning

immutable objects

Use caches

Use caches

● REST-ful services
over HTTP let you
cache easily

Use caches

● REST-ful services
over HTTP let you
cache easily

● Internal caching is
trickier, but “out-of-
the-box” with most
frameworks

Use caches

● REST-ful services
over HTTP let you
cache easily

● Internal caching is
trickier, but “out-of-
the-box” with most
frameworks

Proxy other people's services through your own cache!

Use queues

Use queues

● Full blown job server:
Gearman

Use queues

● Full blown job server:
Gearman

● AMQP
implementation:
RabbitMQ

Use queues

● Full blown job server:
Gearman

● AMQP
implementation:
RabbitMQ

● Light-weight sockets:
0MQ

Use the right storage

Use the right storage

Use the right storage

Availability

Partitioning

Consistency

Use the right storage

Availability

Partitioning

Consistency

Enforced consistency
(RDBMS)

Eventual consistency
(NoSQL)

Scale your storage

Scale your storage

● Master/slave
replication

Scale your storage

● Master/slave
replication

● Table partitioning

Scale your storage

● Master/slave
replication

● Table partitioning
● Row partitioning

Scale your storage

● Master/slave
replication

● Table partitioning
● Row partitioning

● rsync

Scale your storage

● Master/slave
replication

● Table partitioning
● Row partitioning

● rsync
● NFS

Scale your storage

● Master/slave
replication

● Table partitioning
● Row partitioning

● rsync
● NFS
● GlusterFS

Now you can use the cloud

Now you can use the cloud

● Full service –
orchestra.io

Now you can use the cloud

● Full service
orchestra.io

● Infrastructure mgmt.
Scalr

Now you can use the cloud

● Full service
orchestra.io

● Infrastructure mgmt.
Scalr

● Manually
$your_code_here

Now you can use the cloud

● Full service
orchestra.io

● Infrastructure mgmt.
Scalr

● Manually
$your_code_here

● Automate!
Chef & Puppet

Review

Review

● Start with only what
you need

Review

● Start with only what
you need

● Identify the
problems

Review

● Start with only what
you need

● Identify the
problems

● Pull the problem out
to a service

Review

● Start with only what
you need

● Identify the
problems

● Pull the problem out
to a service

● Distribute

Thank you!

● Feedback:

http://joind.in/6324

● Photos & Transformers:
Nina Merewood

● Legal?
Takara & Hasbro

● ElePHPant smuggling:
Johannes Schlüter (@phperror)

● Vintage photo nonsense:
http://pixlr.com/o-matic/

http://joind.in/6324
http://twitter.com/phperror
http://pixlr.com/o-matic/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139

