
Multi-User Mode Android
Exploring The Android 4.2.x Security Model

Jesse Burns

Confidence 2013

May, 29th Krakow ,Poland

• Jelly Bean & It’s Features

• Claiming and Disclaiming Multi-User Security

• Protections

• What

• How

• Example improvements

Agenda

Jelly Bean and It’s Features

• Android has weird naming

• Names, Numbers and API Levels

Version Name Numbers API

Cupcake 1.5 3

Donut 1.6 4

Éclair 2.0 5

Éclair 2.0.1 6

Éclair 2.1 7

Froyo 2.2.x 8

Gingerbread 2.3 9

Version Name Numbers API

Gingerbread 2.3.3 10

Honeycomb 3.0 11

Honeycomb 3.1 12

Honeycomb 3.2 13

Ice Cream Sandwich 4.0.1 14

Ice Cream Sandwich 4.0.3 15

Jelly Bean 4.1 16

Jelly Bean 4.2 17

Jelly Bean – 4.2 – API 17

• Not a new “version name”

• New features: especially security features

Application verification, More control of
premium SMS, Always-on VPN, Certificate
Pinning, Improved display of Android
permissions, installd hardening, init script
hardening, FORTIFY_SOURCE,
ContentProvider default configuration,
Cryptography, Security Fixes…

Jelly Bean – 4.2 – API 17

• Big Feature: Multi-User Support for tablets!

• Sounds security related!

• User’s have different names, passwords, data

• New concept of an device “owner”

• Lots of security stuff under the covers

• Death to “World Read and Writeable”

Disclaiming Security

• This sounds like a security feature until you go to use it…
“As with any computer, you should share this tablet only with
people you trust.”

Claiming Security

“No matter which of these APIs you use to save data for a
given user, the data will not be accessible while running
as a different user. From your app’s point of view, each
user is running on a completely separate device.”

“As an app developer, there’s nothing different you need
to do in order for your app to work properly with multiple
users on a single device.”

http://developer.android.com/about/versions/android-
4.2.html#MultipleUsers

http://developer.android.com/about/versions/android-4.2.html
http://developer.android.com/about/versions/android-4.2.html
http://developer.android.com/about/versions/android-4.2.html
http://developer.android.com/about/versions/android-4.2.html
http://developer.android.com/about/versions/android-4.2.html
http://developer.android.com/about/versions/android-4.2.html

So which is it?

• Confusing – is this a security barrier?

• Till I mentioned a few problems

• Fixed things I reported, wanted more

• Clearly part of their security model

• I didn’t notice the fixes for awhile – 2 day fix latency, in
code only apparent when 4.2.2 was open sourced

• Guests trust owners, owners trust guests less

• Real, but tablet only for now

What is protected

• Processes and UIDs – the model has changed!

• “Activity Manager” arbitrated IPC

• New Permissions, command parameters and APIs

• Storage spaces for apps, isolation with namespaces!

• Even “sdcard” (no 4.2.x devices with real sdcards)

• The “Owner”, from guests - generally

• Certain System Settings

• New read only “Global” settings

• Apps loosing ability to write

What isn’t protected

• Anything that’s device wide:

• Calling or messaging on a phone (hence tablet only!)

• System Logs: note 4.1 READ_LOGS protection upgrade

• System services state, e.g. clipboard changes

• Shared System Settings that weren’t migrated
• Configurations like Paired Bluetooth, WiFi, Unknown Sources

• The idea of an untrusted user now exists outside the
lock screen

• Guests from owners

Protections Explored UIDs

• Android Apps have their own UIDs

• This is now one UID per app, per user

• So each app on a device with 3 users, runs with 3 UIDs

Protections Explored UIDs

• Comment explaining naming in
bionic/libc/bionic/stubs.cpp

Translate a user/group name to the corresponding user/group id.

// u0_a1234 -> 0 * AID_USER + AID_APP + 1234

// u2_i1000 -> 2 * AID_USER + AID_ISOLATED_START + 1000

// u1_system -> 1 * AID_USER + android_ids['system']

// returns 0 and sets errno to ENOENT in case of error

• Gist is – UID space divided into ranges

Protections Explored UIDs

• Android already used UID / GID ranges

• Service Isolation (new from 4.1) extended this

• When android:isolatedProcess="true“

• Runs with unique, unprivileged UID 99000 to 99999.

system/core/include/private/android_filesystem_config.h

AID_ISOLATED_START 99000

/* start of uids for fully isolated sandboxed processes */

AID_ISOLATED_END 99999

/* end of uids for fully isolated sandboxed processes */

http://developer.android.com/guide/topics/manifest/service-element.html

Protections Explored UIDs

• System services – not per-user

• But “launcher” might run as:

U0_a18, u10_a18, and u14_a18

• Three users 0, 10, and 14, one app – a18, three UIDs:

• 10018, 1010018, 1410018

• Four GIDs – 10018, 1010018, 1410018 & 50018 all_a18

• That ALL GID (secondary group) isn’t used much

• Android already used UID / GID ranges

Activity Manager arbitrated IPC

• New Perms: INTERACT_ACROSS_USERS_FULL &
INTERACT_ACROSS_USERS &
ACCESS_ALL_EXTERNAL_STORAGE &
ACCESS_CONTENT_PROVIDERS_EXTERNALLY &
MANAGE_USERS

• ProtectionLevels above Dangerous – all at least
Signature – most available to shell.

Activity Manager arbitrated IPC

• Context has new methods:

sendBroadcastAsUser(Intent intent, UserHandle user);
sendBroadcastAsUser(Intent intent, UserHandle user, String
receiverPermission);

• @hide methods too!

registerReceiverAsUser(BroadcastReceiver receiver,
UserHandle user, IntentFilter filter, String
broadcastPermission, Handler scheduler)

startActivityAsUser(Intent intent, UserHandle user)

startServiceAsUser(Intent service, UserHandle user)

stopServiceAsUser(Intent service, UserHandle user)

http://androidxref.com/4.2.2_r1/s?refs=sendBroadcastAsUser&project=frameworks
http://androidxref.com/4.2.2_r1/s?defs=Intent&project=frameworks
http://androidxref.com/4.2.2_r1/s?refs=intent&project=frameworks
http://androidxref.com/4.2.2_r1/s?defs=UserHandle&project=frameworks
http://androidxref.com/4.2.2_r1/s?refs=user&project=frameworks
http://androidxref.com/4.2.2_r1/s?refs=sendBroadcastAsUser&project=frameworks
http://androidxref.com/4.2.2_r1/s?defs=Intent&project=frameworks
http://androidxref.com/4.2.2_r1/s?refs=intent&project=frameworks
http://androidxref.com/4.2.2_r1/s?defs=UserHandle&project=frameworks
http://androidxref.com/4.2.2_r1/s?refs=user&project=frameworks
http://androidxref.com/4.2.2_r1/s?defs=String&project=frameworks
http://androidxref.com/4.2.2_r1/s?defs=receiverPermission&project=frameworks
http://androidxref.com/4.2.2_r1/s?refs=registerReceiverAsUser&project=frameworks
http://androidxref.com/4.2.2_r1/s?defs=BroadcastReceiver&project=frameworks
http://androidxref.com/4.2.2_r1/s?refs=receiver&project=frameworks
http://androidxref.com/4.2.2_r1/s?defs=UserHandle&project=frameworks
http://androidxref.com/4.2.2_r1/s?defs=user&project=frameworks
http://androidxref.com/4.2.2_r1/s?defs=IntentFilter&project=frameworks
http://androidxref.com/4.2.2_r1/s?defs=filter&project=frameworks
http://androidxref.com/4.2.2_r1/s?defs=String&project=frameworks
http://androidxref.com/4.2.2_r1/s?defs=broadcastPermission&project=frameworks
http://androidxref.com/4.2.2_r1/s?defs=Handler&project=frameworks
http://androidxref.com/4.2.2_r1/s?defs=scheduler&project=frameworks
http://androidxref.com/4.2.2_r1/s?refs=startActivityAsUser&project=frameworks
http://androidxref.com/4.2.2_r1/s?defs=Intent&project=frameworks
http://androidxref.com/4.2.2_r1/s?refs=intent&project=frameworks
http://androidxref.com/4.2.2_r1/s?defs=UserHandle&project=frameworks
http://androidxref.com/4.2.2_r1/s?refs=user&project=frameworks
http://androidxref.com/4.2.2_r1/s?refs=startServiceAsUser&project=frameworks
http://androidxref.com/4.2.2_r1/s?defs=Intent&project=frameworks
http://androidxref.com/4.2.2_r1/s?refs=service&project=frameworks
http://androidxref.com/4.2.2_r1/s?defs=UserHandle&project=frameworks
http://androidxref.com/4.2.2_r1/s?refs=user&project=frameworks
http://androidxref.com/4.2.2_r1/s?refs=stopServiceAsUser&project=frameworks
http://androidxref.com/4.2.2_r1/s?defs=Intent&project=frameworks
http://androidxref.com/4.2.2_r1/s?refs=service&project=frameworks
http://androidxref.com/4.2.2_r1/s?defs=UserHandle&project=frameworks
http://androidxref.com/4.2.2_r1/s?refs=user&project=frameworks

Protections Explored - Storage

• /data/users now contains per-user directories

• 0 – the owner

• 10, 11, etc. – the guests

• Each looks like /data/data (0 is just a symlink here)
drwxr-x--x u10_system u10_system 2013-03-29 23:37 android

drwxr-x--x u10_a36 u10_a36 2013-03-29 23:37 com.android.apps.tag

drwxr-x--x u10_a1 u10_a1 2013-03-29 23:37 com.android.backupconfirm

drwxr-x--x u10_bluetooth u10_bluetooth 2012-01-05 08:07 com.android.bluetooth

drwxr-x--x u10_a3 u10_a3 2013-03-29 23:39 com.android.browser

• … but owned by the users’ apps UIDs

• Explains MODE_WORLD* deprecation

Protections Explored - Storage

• Applications are going to see their own local data,
caches, databases etc! Without changing their code.

• This isolation is not namespace mount isolation
though – other readable and writeable is accessible

• Unix permissions are the enforcement for app data

• Code like libraries still the same bytes / pages

Protections Explored - Storage
-rw-r--r-- system all_a41 60696 2013-03-29 23:40

data@app@jackpal.androidterm-1.apk@classes.dex

-rw-r--r-- system all_a0 24592 2013-03-29 21:28

system@app@ApplicationsProvider.apk@classes.dex

-rw-r--r-- system all_a1 9768 2013-03-29 21:28

system@app@BackupRestoreConfirmation.apk@classes.dex

-rw-r--r-- system all_a2 16584 2013-03-29 21:28

system@app@BasicDreams.apk@classes.dex

-rw-r--r-- system u0_a31002 566224 2013-03-29 21:28

system@app@Bluetooth.apk@classes.dex

-rw-r--r-- system all_a3 912832 2013-03-29 21:28

system@app@Browser.apk@classes.dex

-rw-r--r-- system all_a4 348392 2013-03-29 21:28

system@app@Calculator.apk@classes.dex

-rw-r--r-- system all_a5 672344 2013-03-29 21:28

system@app@Calendar.apk@classes.dex

External Storage Protections

• SD Card / External Storage is actually cooler

• Shared between apps – although permissions for read and
write are being slowly retrofitted

• Zygote uses – Linux’s Namespaces -- /sdcard

• Unshare() – gives per-process view of mounts

• Transparent to apps developers, each user has a unique
view of the external storage

“Each user must have their own isolated primary external
storage, and must not have access to the primary external
storage of other users.”

http://source.android.com/tech/storage/

http://source.android.com/tech/storage/
http://source.android.com/tech/storage/

Protections Explored

• Processes and UIDs – the model has changed!

• External Storage isolation with namespaces!

• Even “sdcard” (any 4.2.x tablets with real sdcards?)

• New Permissions, command parameters and APIs

• The “Owner” – the first user

• Certain System Settings

• New read only “Global” settings

• Apps loosing ability to write

• The owners of devices _own_ them

• They control the software, including the Trusted Code
Base, they can root it, update it etc.

• They can physically mess with them, know the root
decryption key, can access backups or whatever

• Users always trust the owner of a machine

Trusting the Owner

• Owners may activate USB debugging on their device

• Then they can see the system’s logs, or run privileged
commands like:

c o n t e n t q u e r y - - u r i

c o n t e n t : / / c o m . a n d r o i d . c o n t a c t s / c o n t a c t s /

- - u s e r 1 0

• This dumps other users contacts, note the “content” tool
was updated for 4.2 to support users

Trusting the Owner

Trusting the Guest

• On 4.2.1 – e.g. older unpatched Jelly Bean API 17

• Non-owners could enable USB debugging e.g. in a
terminal (not an ADB shell)

am start -a android.settings
.APPLICATION_DEVELOPMENT_SETTINGS --user 10

• Then check the debugging, or set a backup password

• That’s because this system UI is trusted

• Fixed in 4.2.2, the system doesn’t want to trust guests

• System Services needed tweaks for Multi-User
• ClipboardService – added:

private PerUserClipboard getClipboard() {

 return getClipboard(UserId.getCallingUserId());

}

private PerUserClipboard getClipboard(int userId) {

 synchronized (mClipboards) {

 Slog.i(TAG, "Got clipboard for user=" + userId);

 PerUserClipboard puc = mClipboards.get(userId);

 if (puc == null) {

 puc = new PerUserClipboard(userId);

 mClipboards.put(userId, puc);

 }

 return puc;

...

Modifying a System Service

• Networking configuration is shared

• Not all devices automatically activate

• E.g.

• Bluetooth speakers
• Paired as guest

• Work as owner

• Bluetooth keyboard
• Paired as guest

• Visible to owner, but not auto-connecting

WiFi and Bluetooth

• Settings.Secure and Settings.System

• Device wide settings are now R/O Global

• Programmatically changing not allowed

• UI based tweaks – like Settings.Secure – sometimes

Settings Changes

Thanks for coming!

Questions?

Thank You

UK Offices
Manchester - Head Office
Cheltenham
Edinburgh
Leatherhead
London
Thame

North American Offices
San Francisco
Atlanta
New York
Seattle

Australian Offices
Sydney

European Offices
Amsterdam - Netherlands
Munich – Germany
Zurich - Switzerland

