IP Fast Reroute Applicability

Pierre Francois Institute IMDEA Networks <u>Pierre.Francois@imdea.org</u>

Agenda

- IGP (Fast) Convergence
- IGP Fast Reroute
- (Hitless maintenance operations)

IGP Fast convergence

- "Pushing the IGP to the limits"
 - Implementation
 - Configuration
- Check with your vendor if your requirements for convergence time are really pushy
 - Depends on router performance
 - Depends on network topology

Components of the IGP convergence

- Failure detection
- Link-State Packet generation / propagation
- LSDB update, SPF run, RIB update
- FIB updates

Failure detection

BFD, L2 alarms,..

Fast detection, no more control plane stress

Link-State generation/propagation

- Generation
 - No more fixed "wait" time 5s, 5s, 5s, ...
 - Exponential back off 0ms, 500ms, 1s
- Propagation
 - "Fast-flood" vs. fixed Pacing timer
- No more artificial delaying under normal operation

Link-State update propagation

- Distance to the **rerouting** nodes
 - msec before updating routers know about the failure
 - Topology dependent
- Repair vs. Re-optimization

Paths recomputation time

- iSPF
- Full SPF takes a few msec now anyway

FIB Updates

- Bottleneck component of the convergence time
- x prefixes at y µsec / prefix...
- Prioritized prefixes

IGP Fast Convergence

- convergence time much below Is now...
- but convergence time scaling factors exist
 - number of prefixes in the IGP
- **recovery** mechanisms can help

Loop-free Alternates

C is a loop free alternate of A, for the failure of $A \rightarrow B$, if C would not forward the traffic sent along $A \rightarrow B$ back to A, when A deviates it to C

FIB design to allow direct deviation of traffic when $A \rightarrow B$ is flagged down

LFA FIB support per-link

prefix	oif
P/P	B

FIXED recovery time

B	DOWN	C
C	UP	B

per-link is constraining

LFA FIB support per-prefix

prefix	oif	back. oif
P/P	B	C

FIXED recovery time

B	DOWN
C	UP

per-prefix LFA

- My favorite
 - Increases coverage
 - Allows for LB'ing LFA'ed traffic
 - Allows to pick the optimal LFA for each prefix
 - Favors post-convergence paths
- More complex
 - Not really to compute, but to manage in the FIB
 - LFAs for LDP-established LSP make it necessary

LFA FIB support per-link

prefix	oif
P/P	B: L I

FIXED recovery time

B	DOWN	C
C	UP	B

LFA FIB support per-link

FIXED recovery time

prefix	oif	back. oif
p/P	B: L I	C: L2
z/Z	B: L2	C: L3

B	DOWN
C	UP

C must have LDP downstream unsolicited turned on or FEC-label must be requested to LFAs

LFAs : where does it apply ?

meshed part of cores

LFAs : where does it apply

$PE \rightarrow P$ links

All the links of a non transit node can protect each other

These links track many prefixes

LFAs : where does it apply

Less prefix tracked on these links

LFAs : where it does not apply

"Ring-ish" parts of topologies

Node protecting LFAs

 An LFA which survives the failure of the entire neighboring node

Node protecting LFAs

De facto node protecting LFA

LFA applicability

- draft-ietf-rtgwg-lfa-applicability-03
 cisco, IMDEA, FT, ATT, DT
 Under IESG review
- Focus on LFA applicability for PoP Designs

Triangle

Fully protected against link and node failures (intra and inter)

Full-mesh

Fully protected against link and node failures (intra and inter)

Square

Summary

- Most typical PoP designs can be covered by LFAs
- Node protection is usually obtained, sometimes de facto
- Square has one link not fully covered

How to reach 100% coverage ?

- Do you need to ?
- Using more complex techniques
 - U-Turns, NotVia...
 - Tunnels
 - MPLS-FRR

Tunnels

- In theory, you can get crazy end-to-end paths
- Within a PoP, less of a concern

LFAs in the core ?

- Less obvious
- Coverage is highly topology dependent
- Topology design driven by many other factors
- Should not be a primary design objective

Profile |

- Designer relies on fast IGP convergence
- LFAs come as a bonus when applicable (50msec vs 500msec)

Profile 2

- Designer seeks for high FRR coverage and cannot (re-)engineer his backbone
- Forget about LFAs
- MPLS TE FRR

Profile 3

- Designer looks for high LFA coverage and can (re-)engineer the topology
- e.g. for some specific demands in some parts of the networks
- Tools to perform capacity planning accounting for LFAs

Tool

IGP Hitless maintenance operations

IGP Hitless maintenance operations

ordered FIB updates

Modifications to OSPF / IS-IS to enforce a loop-free ordering of the FIB updates upon planned maintenance

Metric-increments

Reconfiguration of OSPF / IS-IS to enforce a loop-free transition to post-convergence state

Metric-increments

Usually, one intermediate metric is sufficient

Conclusion

- Sub-second convergence is conservative now
- Local FRR mechanisms make it close to Failure Detection time
 - Easy, simple in the PoP
 - Use with care in the Core, consider as bonus
- (Graceful shutdown is achievable)