
1

QuickTime™ and a
 decompressor

are needed to see this picture.

RESTful Java with JAX-RS

Bill Burke
Engineering Fellow
Red Hat

2

QuickTime™ and a
 decompressor

are needed to see this picture.

Agenda

 Why REST?

 REST Principles

 Writing RESTFul Web Services in Java

 JAX-RS

3

QuickTime™ and a
 decompressor

are needed to see this picture.

Speaker’s Qualifications

 RESTEasy project lead

 Fully certified JAX-RS implementation

 JAX-RS JSR member

 Also served on EE 5 and EJB 3.0 committees

 JBoss contributor since 2001

 Clustering, EJB, AOP

 Published author

 Books, articles

4

QuickTime™ and a
 decompressor

are needed to see this picture.

What are the goals of SOA?

5

QuickTime™ and a
 decompressor

are needed to see this picture.

SOA Goals

 Reusable

 Interoperable

 Evolvable

 Versioning

 Scalable

 Manageable

6

QuickTime™ and a
 decompressor

are needed to see this picture.

What system has these properties?

7

QuickTime™ and a
 decompressor

are needed to see this picture.

The Web!

8

QuickTime™ and a
 decompressor

are needed to see this picture.

What is REST?

 REpresentational State Transfer

 PhD by Roy Fielding

 REST answers the questions of

 Why is the Web so prevalent and ubiquitous?

 What makes the Web scale?

 How can I apply the architecture of the web to
my applications?

9

QuickTime™ and a
 decompressor

are needed to see this picture.

What is REST?

 It can mean a simple, “lightweight”, distributed
interface over HTTP

 REST is really a set of architectural principles

 Principles that make the Web unique

 REST isn’t protocol specific

 But, usually REST == REST + HTTP

 A different way to look at writing Web Services

 Many say it’s the anti-WS-*

 Rediscovery of HTTP

10

QuickTime™ and a
 decompressor

are needed to see this picture.

Why REST?

 HTTP is everywhere

 Zero-footprint clients

 A “Lightweight” stack

 “Lightweight” interoperability

 Evolvability

 Link driven systems allow you to redirect easily

 Content negotiation allows you to support old and new
formats

11

QuickTime™ and a
 decompressor

are needed to see this picture.

REST Architectural Principles

 Addressable Resources

 Representation Oriented

 Constrained interface

 Hypermedia and Link Driven

 Communicate statelessly

12

QuickTime™ and a
 decompressor

are needed to see this picture.

Let’s build a RESTful interface!

13

QuickTime™ and a
 decompressor

are needed to see this picture.

Building a RESTful Interface

 We’ll build a simple Order Entry System

 We’ll apply each architectural principle as we design

 I’ll describe the implications of each principle

14

QuickTime™ and a
 decompressor

are needed to see this picture.

Simple Order Entry System

15

QuickTime™ and a
 decompressor

are needed to see this picture.

Addressable Resources

 Resources are our endpoints in a RESTful interface

 The things in our object model become resources

 Order

 Customer

 Product

 Each resource should have its own URI

16

QuickTime™ and a
 decompressor

are needed to see this picture.

URI Scheme

 /orders

 This URI represents all orders

 We’ll be able to query and create orders from this URI

 /orders/{id}

 This URI represents one order

 From this URI, we’ll be able to read, update, and
remove an order

 {id} is a matching pattern. A wildcard.

 /orders/{id}/lineitems

 We may or may not want to make lineitems addressable

17

QuickTime™ and a
 decompressor

are needed to see this picture.

URI Scheme

 Similar URI Scheme for other objects

 /customers

 /customers/{id}

 /products

 /products/{id}

18

QuickTime™ and a
 decompressor

are needed to see this picture.

Implications of Addressability

 Use HTTP’s identification mechanism

 WS-* usually has one URI you communicate through

 WS-* requires tunnelling additional information about
object identity through SOAP contexts.

 Allows for linking

 Enables the constrained interface (we’ll see later)

 URI schemes should be an implementation detail

 They should be opaque

 Published via links (we’ll see later)

19

QuickTime™ and a
 decompressor

are needed to see this picture.

 Clients and servers exchange representations of a resource through the

uniform interface (which we’ll discuss later)

 XML documents

 JSON documents

 HTTP’s Content-Type header identifies what we’re exchanging

 This is a familiar data exchange pattern for Java developers

 Swing->RMI->Hibernate

 Hibernate objects exchanged to and from client and server

 Client modifies state, uses entities as DTOs, server merges changes

 No different than how REST operates

 No reason a RESTFul webservice and client can’t exchange Java objects!

Representation Oriented

20

QuickTime™ and a
 decompressor

are needed to see this picture.

Choosing a Representation

 We’ll choose XML

 Can add others as needed

21

QuickTime™ and a
 decompressor

are needed to see this picture.

Customer XML

<customer id=“771”>

 <first-name>Bill</first-name>

 <last-name>Burke</last-name>

 <street>555 Beacon Str.</street>

 <city>Boston</city>

 <state>MA</state>

 <zip>02115</zip>

</customer>

22

QuickTime™ and a
 decompressor

are needed to see this picture.

Product XML

<product id=“543”>

 <name>iPhone</name>

 <cost>$199.99</cost>

</customer>

23

QuickTime™ and a
 decompressor

are needed to see this picture.

Order XML

<order id=“133”>

 <total>$199.99<total>

 <date>01/20/2010<date>

 <customer id=“771”>

 <first-name>Bill</first-name>

 <last-name>Burke</last-name>

 <street>555 Beacon Str.</street>

 <city>Boston</city>

 <state>MA</state>

 <zip>02115</zip>

 </customer>

 <line-items>

 <line-item>

 <product id=“543”>

 <name>iPhone</name>

 <cost>$199.99</cost>

 </product>

 </line-item>

 </line-items>

</customer>

24

QuickTime™ and a
 decompressor

are needed to see this picture.

Implications of Representations

 Each URI can exchange multiple representations

 HTTP Content Negotiation allows clients and servers
to choose what’s best for them

25

QuickTime™ and a
 decompressor

are needed to see this picture.

HTTP Negotiation

 HTTP allows the client to specify the type of data it is

sending and the type of data it would like to receive

 Depending on the environment, the client negotiates

on the data exchanged

 An AJAX application may want JSON

 A Ruby application my want the XML representation of

a resource

26

QuickTime™ and a
 decompressor

are needed to see this picture.

 HTTP Headers manage this negotiation

 ACCEPT: comma delimited list of one or more MIME types the client
would like to receive as a response

 In the following example, the client is requesting a customer
representation in either xml or json format

 Preferences are supported and defined by HTTP specification

GET /customers/33323

Accept: application/xml,application/json

GET /customers/33323

Accept: text/html;q=1.0,

 application/json;q=0.7;application/xml;q=0.5

HTTP Negotiation

27

QuickTime™ and a
 decompressor

are needed to see this picture.Implications of Representations

 Evolvable integration-friendly services

 Common consistent location (URI)

 Common consistent set of operations (uniform interface)

 Interactions defined, formats slapped on as needed

 Built-in service versioning

 application/customers+xml;version=1

 application/customers+xml;version=2

28

QuickTime™ and a
 decompressor

are needed to see this picture.Constrained, Uniform Interface

 The idea is to have a well-defined, fixed, finite set of operations

 Clients can only use these operations

 Each operation has well-defined, explicit behavior

 In HTTP land, these methods are GET, POST, PUT, DELETE

 How can we build applications with only 4+ methods?

 SQL only has 4 operations: INSERT, UPDATE, SELECT,
DELETE

 JMS has a well-defined, fixed set of operations

 Both are pretty powerful and useful APIs with constrained
interfaces

29

QuickTime™ and a
 decompressor

are needed to see this picture.Constrained, Uniform Interface

 GET - readonly operation

 PUT - used for insert or update of a resource

 DELETE - remove a resource

 POST - used for creation or as an “anything goes” operation

 GET, PUT, DELETE are idempotent

 If you invoke same operation more than once, you should get
the same result every time

 POST is not idempotent

 Each POST can have a different effect on the resource

30

QuickTime™ and a
 decompressor

are needed to see this picture.

Read a Customer

Request:

GET /customer/771 HTTP/1.1

Response:

HTTP/1.1 200 OK

Content-Type: application/xml

<customer id=“771”>

 <first-name>Bill</first-name>

 <last-name>Burke</last-name>

 <street>555 Beacon Str.</street>

 <city>Boston</city>

 <state>MA</state>

 <zip>02115</zip>

</customer>

31

QuickTime™ and a
 decompressor

are needed to see this picture.

Update a Customer: Change address

Request:

PUT /customer/771 HTTP/1.1

Content-Type: application/xml

<customer id=“771”>

 <first-name>Bill</first-name>

 <last-name>Burke</last-name>

 <street>101 Dartmouth Str.</street>

 <city>Boston</city>

 <state>MA</state>

 <zip>02115</zip>

</customer>

32

QuickTime™ and a
 decompressor

are needed to see this picture.

Creation

 There is a common pattern for creation

 POST to a top resource URI

 Get back the location (URI) of created resource

 Response contains a Location header

33

QuickTime™ and a
 decompressor

are needed to see this picture.

Create a Customer

Request:

POST /customers HTTP/1.1

Content-Type: application/xml

<customer>

 <first-name>Monica</first-name>

 <last-name>Burke</last-name>

 <street>101 Dartmouth Str.</street>

 <city>Boston</city>

 <state>MA</state>

 <zip>02115</zip>

</customer>

Response:

HTTP/1.1 201 Created

Location: http://example.com/customers/2322

34

QuickTime™ and a
 decompressor

are needed to see this picture.

When 4 methods don’t fit

 What operations are required on Orders?

 Create - POST on /orders

 Read - GET on /orders/{id}

 Update - PUT on /orders/{id}

 Remove - DELETE on /orders/{id}

 Cancel?

35

QuickTime™ and a
 decompressor

are needed to see this picture.

Operations modeled as state

 Can Cancel be modeled as state?

 Yes, cancelled is a state of the order

 Let’s add a <cancelled> element to our representation

 The act of cancelling becomes an update of the
representation

36

QuickTime™ and a
 decompressor

are needed to see this picture.

Cancel an Order

Request:

PUT /order/331 HTTP/1.1

Content-Type: application/xml

<order id=“331”>

 <total>$199.99</total>

 <date>01/20/2010</date>

 <cancelled>true</cancelled>

 …

</order>

37

QuickTime™ and a
 decompressor

are needed to see this picture.

Operations not modeled as state

 What if an operation can’t be modeled as state?

 Example: order purging

 Remove all cancelled orders.

 In this case, define a new resource:

 /orders/purge

 POST or PUT to this resource

38

QuickTime™ and a
 decompressor

are needed to see this picture.Implications of Uniform Interface

 Simplified

 No stubs you have to generate distribute

 Nothing to install, maintain, upgrade

 No vendor you have to pay big bucks to

39

QuickTime™ and a
 decompressor

are needed to see this picture.

Identity Operations

Complexity

Data format

40

QuickTime™ and a
 decompressor

are needed to see this picture.Implications of Uniform Interface

 Interoperability

 HTTP a stable protocol

 WS-*, again, is a moving target

 Ask CXF, Axis, and Metro how difficult Microsoft
interoperability has been

 Focus on interoperability between applications rather
focusing on the interoperability between vendors.

 Familiarity

 Operations and admins know how to secure, partition,
route, and cache HTTP traffic

 Leverage existing tools and infrastructure instead of
creating new ones

41

QuickTime™ and a
 decompressor

are needed to see this picture.

Hypermedia, or rather Links

 Links drive interactions

 When a human uses a browser

 No idea what the URI scheme is beforehand

 Human just follows links

 Google follows links to create search indexes

42

QuickTime™ and a
 decompressor

are needed to see this picture.

Implications of Links

 Links allow you to compose data

<order id=“133”>

 <total>$199.99<total>

 <date>01/20/2010<date>

 <link rel=“customer”

 href=“http://example.com/customers/771”/>

 <line-items>

 <line-item>

 <link rel=“product”

 href=“http://example.com/products/543”/>

 </line-item>

 </line-items>

</customer>

43

QuickTime™ and a
 decompressor

are needed to see this picture.

Implications of Links

 Links allow URIs to become opaque

 URIs become an implementation detail

 RESTful systems usually have very few published
URIs

 URIs schemes can change without breaking clients

44

QuickTime™ and a
 decompressor

are needed to see this picture.

Implications of Links

 One URL for Order Entry System

 Query base URI, then traverse links to interact

Request:

GET /order-entry-system HTTP/1.1

Response:

HTTP/1.1 200 OK

Content-Type: application/xml

<services>

 <link rel=“orders” href=“http://…”/>

 <link rel=“customers” href=“http://…”/>

 <link rel=“products” href=“http://…”/>

</services

45

QuickTime™ and a
 decompressor

are needed to see this picture.

Statelessness

 A RESTFul web service does not maintain sessions/conversations
on the server

 Doesn’t mean a web service can’t have state

 REST mandates

 That state be converted to resource state

 Conversational state be held on client and transferred with
each request

46

QuickTime™ and a
 decompressor

are needed to see this picture.

Statelessness

 Sessions are not linkable

 You can’t link a reference to a service that requires a
session

 A stateless application scales

 Sessions require replication

 Stateless services only require load balancing

47

QuickTime™ and a
 decompressor

are needed to see this picture.

REST in Conclusion

 REST answers questions of

 Why does the Web scale?

 Why is the Web so ubiquitous?

 How can I apply the architecture of the Web to my applications?

 Promises

 Simplicity

 Zero-footprint clients.

 Interoperability

 Platform independence

 Change resistance

48

QuickTime™ and a
 decompressor

are needed to see this picture.

JAX-RS

RESTFul Web Services in Java

49

QuickTime™ and a
 decompressor

are needed to see this picture.

JAX-RS

 JCP Specification

 Required in Java EE 6

 Annotation Framework

 Allows you to map HTTP requests to Java method

invocations

50

QuickTime™ and a
 decompressor

are needed to see this picture.

JAX-RS: GET /orders/3323

@Path(“/orders”)

public class OrderResource {

 @Path(“/{order-id}”)

 @GET

 @Produces(“application/xml”)

 Order getOrder(@PathParam(“order-id”) int id) {

 …

 }

}

51

QuickTime™ and a
 decompressor

are needed to see this picture.

JAX-RS Annotations

 @Path

 Defines URI mappings and templates

 @Produces, @Consumes

 What MIME types does the resource produce and
consume

 @GET, @POST, @DELETE, @PUT, @HEAD

 Identifies which HTTP method the Java method is
interested in

52

QuickTime™ and a
 decompressor

are needed to see this picture.JAX-RS Parameter Annotations

 @PathParam

 Allows you to extract URI parameters/named URI template
segments

 @QueryParam

 Access to specific parameter URI query string

 @HeaderParam

 Access to a specific HTTP Header

 @CookieParam

 Access to a specific cookie value

53

QuickTime™ and a
 decompressor

are needed to see this picture.

@Path(“/orders”)

public class OrderService {

 @Path(“/{order-id}”)

 @GET

 @Produces(“application/xml”)

 Order getOrder(@PathParam(“order-id”) int id) {

 …

 }

}

Base URI path to resource

JAX-RS: GET /orders/3323

54

QuickTime™ and a
 decompressor

are needed to see this picture.

@Path(“/orders”)

public class OrderService {

 @Path(“/{order-id}”)

 @GET

 @ProduceMime(“application/xml”)

 Order getOrder(@PathParam(“order-id”) int id) {

 …

 }

}

Additional URI pattern

that getOrder() method maps to

JAX-RS: GET /orders/3323

55

QuickTime™ and a
 decompressor

are needed to see this picture.

@Path(“/orders”)

public class OrderService {

 @Path(“/{order-id}”)

 @GET

 @Produces(“application/xml”)

 Order getOrder(@PathParam(“order-id”) int id) {

 …

 }

}

Defines a URI path segment pattern

JAX-RS: GET /orders/3323

56

QuickTime™ and a
 decompressor

are needed to see this picture.

@Path(“/orders”)

public class OrderService {

 @Path(“/{order-id}”)

 @GET

 @Produces(“application/xml”)

 Order getOrder(@PathParam(“order-id”) int id) {

 …

 }

}

HTTP method Java getOrder() maps

to

JAX-RS: GET /orders/3323

57

QuickTime™ and a
 decompressor

are needed to see this picture.

@Path(“/orders”)

public class OrderService {

 @Path(“/{order-id}”)

 @GET

 @Produces(“application/xml”)

 Order getOrder(@PathParam(“order-id”) int id) {

 …

 }

}

What’s the CONTENT-TYPE

returned?

JAX-RS: GET /orders/3323

58

QuickTime™ and a
 decompressor

are needed to see this picture.

@Path(“/orders”)

public class OrderService {

 @Path(“/{order-id}”)

 @GET

 @Produces(“application/xml”)

 Order getOrder(@PathParam(“order-id”) int id) {

 …

 }

}

Inject value of URI segment into the

id Java parameter

JAX-RS: GET /orders/3323

59

QuickTime™ and a
 decompressor

are needed to see this picture.

@Path(“/orders”)

public class OrderService {

 @Path(“/{order-id}”)

 @GET

 @Produces(“application/xml”)

 Order getOrder(@PathParam(“order-id”) int id) {

 …

 }

}

Automatically convert URI string

segment into an integer

JAX-RS: GET /orders/3323

60

QuickTime™ and a
 decompressor

are needed to see this picture.

@Path(“/orders”)

public class OrderService {

 @Path(“/{order-id}”)

 @GET

 @Produces(“application/xml”)

 Order getOrder(@PathParam(“order-id”) int id) {

 …

 }

}

Content handlers can convert from

Java to Data Format

JAX-RS: GET /orders/3323

61

QuickTime™ and a
 decompressor

are needed to see this picture.

JAX-RS: POST /orders

@Path(“/orders”)

public class OrderService {

 @POST

 @Consumes(“application/xml”)

 void submitOrder(Order orderXml) {

 …

 }

}

What CONTENT-TYPE is this method

expecting from client?

62

QuickTime™ and a
 decompressor

are needed to see this picture.

@Path(“/orders”)

public class OrderService {

 @POST

 @Consumes(“application/xml”)

 void submitOrder(Order orderXml) {

 …

 }

}

Un-annotated parameters assumed

to be incoming message body.

There can be only one!

JAX-RS: POST /orders

63

QuickTime™ and a
 decompressor

are needed to see this picture.

@Path(“/orders”)

public class OrderService {

 @POST

 @Consumes(“application/xml”)

 void submitOrder(Order orderXml) {

 …

 }

}

Content handlers can convert from

data format into Java object

JAX-RS: POST /orders

64

QuickTime™ and a
 decompressor

are needed to see this picture.

More on Content Handlers

 Media type, annotations, object type are all used to
find a handler

@XmlElement

public class Order {

…

}

@Path(“/orders”)

public class OrderService {

 @POST

 @Consumes(“application/xml”)

 void submitOrder(Order orderXml) {

 …

 }

}

65

QuickTime™ and a
 decompressor

are needed to see this picture.

More on Content Handlers

 JAXB and other simple types required by specification

 JSON? Jackson project is a great provider

 Atom, multipart, XOP and other formats available

 You can write your own custom ones

66

QuickTime™ and a
 decompressor

are needed to see this picture.

Response Object

 JAX-RS has a Response and ResponseBuilder class

 Customize response code

 Specify specific response headers

 Specify redirect URLs

 Work with variants

@GET

Response getOrder() {

 ResponseBuilder builder =

 Response.status(200, order);

 builder.type(“text/xml”)

 .header(“custom-header”, “33333”);

 return builder.build();

}

67

QuickTime™ and a
 decompressor

are needed to see this picture.

JAX-RS Content Negotiation

 Matched up and chosen based on request ACCEPT header

 Accept: application/json;q=1.0,application/xml;q=0.5

@GET

@Produces(“application/xml”)

String getXmlOrder() {…}

@GET

@Produces(“application/json”)

String getJsonOrder() {…}

68

QuickTime™ and a
 decompressor

are needed to see this picture.

ExceptionMappers

 Map application thrown exceptions to a Response object

 Implementations annotated by @Provider

public interface ExceptionMapper<E>

{

 Response toResponse(E exception);

}

69

QuickTime™ and a
 decompressor

are needed to see this picture.

RESTFul Java Clients

70

QuickTime™ and a
 decompressor

are needed to see this picture.

RESTFul Java Clients

 java.net.URL

 Ugly, buggy, clumsy

 Apache HTTP Client

 Full featured

 Verbose

 Not JAX-RS aware

 Jersey and RESTEasy APIs

 Similar in idea to Apache HTTP Client except JAX-RS aware

 RESTEasy Client Proxy Framework

 Define an interface, re-use JAX-RS annotations for sending requests

71

QuickTime™ and a
 decompressor

are needed to see this picture.RESTEasy Client Proxy Framework

@Path(“/customers”)

public interface CustomerService {

 @GET

 @Path(“{id})

 @Produces(“application/xml”)

 public Customer getCustomer(

 @PathParam(“id”) String id);

}

CustomerService service =

 ProxyFactory(CustomerService.class,

 “http://example.com”);

Customer cust = service.getCustomer(“3322”);

72

QuickTime™ and a
 decompressor

are needed to see this picture.

RESTEasy

 Embeddable

 Spring, EJB, Guice, and Seam integration

 Client Framework

 Asynchronous HTTP (COMET)

 Client and Server Side Caching

 Interceptor model

 GZIP encoding support

 Data format support

 Atom, JAXB, JSON, Multipart, XOP

73

QuickTime™ and a
 decompressor

are needed to see this picture.

JAX-RS Conclusions

 Mapping HTTP requests using annotations

 A la carte HTTP information

 Nice content handlers

 Nice routing

74

QuickTime™ and a
 decompressor

are needed to see this picture.

References

 Links

 http://jsr311.dev.java.net/

 http://jboss.org/resteasy

 http://rest-star.org

 O’Reilly Books

 “RESTFul Java with JAX-RS” by me

 “RESTful Web Services”

 “RESTful Web Services Cookbook”

QuickTime™ and a
 decompressor

are needed to see this picture.

http://jsr311.dev.java.net/
http://jboss.org/resteasy
http://java.dzone.com/articles/intro-rest
http://java.dzone.com/articles/intro-rest
http://java.dzone.com/articles/intro-rest

