
Busy Java Developer's Guide
to Functional Programming

Ted Neward

Neward & Associates

http://www.tedneward.com

Credentials

 Who is this guy?
– Principal Consultant: architect, mentor, free agent coach

– BEA Technical Director, Microsoft MVP Architect

– JSR 175, 250, 277 EG member

– Founding Editor-in-Chief: TheServerSide.NET

– Author

• Professional F# (Forthcoming)
• Effective Enterprise Java (Addison-Wesley, 2004)
• Server-Based Java Programming (Manning, 2000)
• C# in a Nutshell (OReilly, 2003)
• SSCLI Essentials (w/Stutz, Shilling; OReilly, 2003)

– Papers at http://www.tedneward.com

– Weblog at http://blogs.tedneward.com

http://www.tedneward.com/
http://blogs.tedneward.com/

Review

 What is functional programming (concepts)?
– Why do I care?

 How can one program functionally in Java?

 What “close-to-Java” tools are there?

Concepts

 Functional languages
– functional as in mathematics' notion of function

 for every x, there is a corresponding value y
 this implies no side effects

– not imperative statements, but expressions

 "x = x+1" is not increment, … it's impossible
 this implies expressions can be substituted
 … or executed independently (parallellism)

– spectrum of "functional-ness", known as purity

 "pure" functional languages allow for no side effects
 "impure" functional languages allow for side effects

Any
effect

X := In1
X := X*X
X := X + In2*In2

C, C++, Java, C#, VB Excel, Haskell

Do this, then do that
“X” is the name of a cell

that has different
values at different
times

No notion of sequence
“A2” is the name of a

(single) value

Commands, control flow Expressions, data flow

Pure
(no effects)

Spectrum

X := In1
X := X*X
X := X + In2*In2

C, C++, Java, C#, VB

Do this, then do that
“X” is the name of a cell

that has different
values at different
times

Commands, control flow

3 In1

4 In2

 X

Imperative

C, C++, Java, C#, VB

Do this, then do that
“X” is the name of a cell

that has different
values at different
times

Commands, control flow

3 In1

4 In2

3 X

X := In1
X := X*X
X := X + In2*In2

Imperative

C, C++, Java, C#, VB

Do this, then do that
“X” is the name of a cell

that has different
values at different
times

Commands, control flow

3 In1

4 In2

9 X

X := In1
X := X*X
X := X + In2*In2

Imperative

C, C++, Java, C#, VB

Do this, then do that
“X” is the name of a cell

that has different
values at different
times

Commands, control flow

3 In1

4 In2

25 X

X := In1
X := X*X
X := X + In2*In2

Imperative

Excel, Haskell, F#

No notion of sequence
“A2” is the name of a

(single) value

Expressions, data flow A2 = A1*A1
B2 = B1*B1
A3 = A2+B2

*

*

+
A1

B1
B2

A2
A3

Functional

Concepts

 Some basic functional concepts
– strongly-typed, type-inferenced

– immutable values

– functions as first-class values

– expressions-not-statements

– tuples, lists

– recursion

– pattern-matching

– currying, partial-application of functions

Concepts

 Strongly-typed
– Java already has this… to a point

– Generics could/should be all the way through the JVM

 Type-inferenced
– Java fails on this point—requires explicit declarations

– Not a deal-breaking concern, just more verbosity

 Expressions-not-statements
– Java fails on this point—statements core to the language

– We could (maybe) support this by doing everything
declaratively (e.g. generics-based expressions), but… bleah

Concepts

 Recursion
– Java supports recursion, obviously

 Immutable values
– Java supports immutability, but only with help

in other words, you have to train your fingers to type “final”

Concepts

 Functions as first-class values
– Java fails here, but libraries can help some

Essentially, we will make heavy use of anonymous inner-class
implementations to mimic/fake standalone functions; this is
commonly known as functors

– Not perfect, but manageable… maybe…

– (Note: other languages make this point much easier, by
hiding the ugly details behind their syntax)

BGGA-javac, Groovy, Scala, Clojure

Concepts

 Tuples, lists, option
– Lists can be List<E>, but List<E> is missing some key ideas

Namely, all the “functional” operations

– Tuples are strongly-typed "bundles" of public data

Tuple2/Pair, Tuple3/Triplet, Tuple4/Quad, …

– Option<E> is a single-membered collection, with two
derived classes: Some<E>, and None

Some<E> represents a value
None<E> represents no value
Being an Iterable<E> means we can operate safely

– Most “functional” operations can be Collections-style
algorithms on a support class

Concepts

 Generators
– Iterable<E> knows how to produce Iterator<E>s

any Iterable<E> can participate in the enhanced "for" loop

– But Iterator<E>s can produce values, not just report them

these are sometimes called generators

– Iterator<E>s could even never terminate!

so long as we have appropriate methods to handle them

– this makes Iterator<E>s akin to sequences

this opens up a new way of thinking/processing

Concepts

 Sequences
– lots of things can be seen as sequences

characters in a string
fields in a record
records in a database
files in a directory
algorithmic calculations (factorial, fibonacci, …)
lines in a file

– sequences and Collections have a deep relationship

more on this later…

Concepts

 Pattern-matching
– pattern-matching feels like a next-generation switch/case

– patterns can be a variety of types

– in Java, pattern-matching is not supported

Concepts

 Partial application of functions
– returning a function that is defined by taking another

function and filling in some (not all) of its parameters

– in Java, this means having to define a new method (as a
subclass of a differently-defined functor interface) that
manually passes in the filled-in parameters

in other words, not precisely doing us any favors here

Implementation

 Most “functional” implementations in Java have
to be done as a library of functors
– functor: object behaving as a function

– as a consequence, most “functional” implementations miss
out on much of the functional language’s goodness

no type inference, no pattern-matching

– not impossible to program functionally… just hard

imagine programming to the JVM in C

Implementation

 Some “functional Java” implementations
– Apache Commons Functor library

http://commons.apache.org/sandbox/functor

– FunctionalJava

http://www.functionaljava.org

– BGGA compiler

http://javac.info

– Mango

http://www.jezuk.co.uk/cgi-bin/view/mango

– Generic Algorithms for Java

http://jga.sourceforge.net/

Summary

 Functional programming is a powerful approach
– particularly when married against Java Collections

– particularly when married against immutable values

 Consider a functional JVM language
– Scala or Clojure are the front-runners

– Jaskell is Haskell-on-JVM

Questions

?

