
NO CONTENT IN THIS

LOGO 'EXCLUSION'
ZONE

ONLY MAIN AND

SECONDARY TITLES

IN THIS AREA

MAIN CONTENT

AREA

NO CONTENT IN THIS AREA

NO CONTENT IN

THIS AREA
NO CONTENT IN

THIS AREA

1 © Rule Financial 2012

JSR-310 and ThreeTen

The New API for Date and Time in Java 8

Grzegorz Borkowski

NO CONTENT IN THIS

LOGO 'EXCLUSION'
ZONE

ONLY MAIN AND

SECONDARY TITLES

IN THIS AREA

MAIN CONTENT

AREA

NO CONTENT IN THIS AREA

NO CONTENT IN

THIS AREA
NO CONTENT IN

THIS AREA

2 © Rule Financial 2012

About me and my company

For 7 years a Java developer, for 4 years a team leader in different Java projects

For 2 years I have been working in Rule Financial as a Lead Consultant
starting this year, also as a Java Focus Group Leader

Rule Financial is a provider of IT and software services to the investment banking,

including top-10 global investment banks. We have offices in London, New York,

Toronto, Barcelona and Łódź. In the Łódź office, we currently hire almost 200

developers. See www.rulefinancial.com

If you want to contact me (re JSR-310, or working at Rule Financial), drop me an

email: grzegorzbor@gmail.com or grzegorz.borkowski@rulefinancial.com

http://www.rulefinancial.com/
mailto:grzegorzbor@gmail.com
mailto:grzegorz.borkowski@rulefinancial.com

NO CONTENT IN THIS

LOGO 'EXCLUSION'
ZONE

ONLY MAIN AND

SECONDARY TITLES

IN THIS AREA

MAIN CONTENT

AREA

NO CONTENT IN THIS AREA

NO CONTENT IN

THIS AREA
NO CONTENT IN

THIS AREA

3 © Rule Financial 2012

Agenda

ISO-8601

Current date/time support in JDK, and its limitations

General problems with date/time handling

What JSR-310 provides

Examples of application

Miscellaneous (current status, JSR-310 vs Joda, etc)
Q&A

NO CONTENT IN THIS

LOGO 'EXCLUSION'
ZONE

ONLY MAIN AND

SECONDARY TITLES

IN THIS AREA

MAIN CONTENT

AREA

NO CONTENT IN THIS AREA

NO CONTENT IN

THIS AREA
NO CONTENT IN

THIS AREA

4 © Rule Financial 2012

ISO-8601

An international standard covering the exchange of date and time-related data

Examples of data formats:
2012-10-22

2012-10-22T16:48:63.000+02:00

2012-10-22T16:48Z // "Z" means UTC/GMT

05:00-04:30

Time zone calculations:

12:00Z = 14:00+02:00 = 7:30-04:30

Note: human/locale representation vs machine/standard representation:

2012-10-22 T16:48+01:00 // as sent from/to web service

22/10/2012 , 4:48 PM BST // as displayed in GUI

NO CONTENT IN THIS

LOGO 'EXCLUSION'
ZONE

ONLY MAIN AND

SECONDARY TITLES

IN THIS AREA

MAIN CONTENT

AREA

NO CONTENT IN THIS AREA

NO CONTENT IN

THIS AREA
NO CONTENT IN

THIS AREA

5 © Rule Financial 2012

The current set

Standard JDK:
java.util.Date

java.util.Calendar
java.sql.Date/Time/Timestamp

javax.xml.datatype.Duration/XmlGregorianCalendar
java.text.DateFormat

Libraries:
Joda Time – the most popular and advanced

NO CONTENT IN THIS

LOGO 'EXCLUSION'
ZONE

ONLY MAIN AND

SECONDARY TITLES

IN THIS AREA

MAIN CONTENT

AREA

NO CONTENT IN THIS AREA

NO CONTENT IN

THIS AREA
NO CONTENT IN

THIS AREA

6 © Rule Financial 2012

Problems with standard classes

java.util.Date/Calendar –

they are mutable

their API is far from perfect
e.g. months are counted from 0 through 11

java.sql.Date/Time/Timestamp – it's even worse

e.g. methods which take no arguments but throw IllegalArgumentException

famous javadoc for Timestamp:

Due to the differences between the Timestamp class and the java.util.Date class
mentioned above, it is recommended that code not view Timestamp values
generically as an instance of java.util.Date. The inheritance relationship between
Timestamp and java.util.Date really denotes implementation inheritance, and not
type inheritance.

NO CONTENT IN THIS

LOGO 'EXCLUSION'
ZONE

ONLY MAIN AND

SECONDARY TITLES

IN THIS AREA

MAIN CONTENT

AREA

NO CONTENT IN THIS AREA

NO CONTENT IN

THIS AREA
NO CONTENT IN

THIS AREA

7 © Rule Financial 2012

Missing in JDK

How to model a date without a time component – e.g. 1 Mar 2012

How to model time without a date – e.g. 11:00

Time with vs without timezone – e.g. 11:00 vs 11:00 CEST

How to model month without a day – e.g. a payment list can be linked to "Oct 2012"

How to model duration, e.g. marathon record "02:03:38"

No support for virtual clock pattern in JDK - how to test applications which use

System.currentTimeMillis?

NO CONTENT IN THIS

LOGO 'EXCLUSION'
ZONE

ONLY MAIN AND

SECONDARY TITLES

IN THIS AREA

MAIN CONTENT

AREA

NO CONTENT IN THIS AREA

NO CONTENT IN

THIS AREA
NO CONTENT IN

THIS AREA

8 © Rule Financial 2012

General problems with dates and time

What will happen if we add one year to 29 Feb 2004?

What will happen if we add one month to 31 Mar?

Date comparison logic, eg. does 1:30+02:00 == 2:30+03:00 ?

Time change problems (summer/winter time): time jumps forward or backward, the

given time can happen twice or never happen; e.g. what will happen if we add one

hour to 2012-10-28 02:15 (note – at 3:00 on that day we'll move our clocks back by 1

hour, so we'll be back at 2:00)

NO CONTENT IN THIS

LOGO 'EXCLUSION'
ZONE

ONLY MAIN AND

SECONDARY TITLES

IN THIS AREA

MAIN CONTENT

AREA

NO CONTENT IN THIS AREA

NO CONTENT IN

THIS AREA
NO CONTENT IN

THIS AREA

9 © Rule Financial 2012

It's not easy!

GregorianCalendar greogorianCalendar = new GregorianCalendar();
vs:
Calendar rightNow = Calendar.getInstance();

getInstance() will return GregorianCalendar, in most countries of the world... but if

you haven't test it with Thailand locale, you could be out of luck in that country

Also, if you trusted iPhone alarm clock in October 2010, you were out of luck... it

went off one hour later after time change

If you used XSLT functions for date time conversion, you could be out of luck too – it

used to take current offset, instead of offset related to the processed date

NO CONTENT IN THIS

LOGO 'EXCLUSION'
ZONE

ONLY MAIN AND

SECONDARY TITLES

IN THIS AREA

MAIN CONTENT

AREA

NO CONTENT IN THIS AREA

NO CONTENT IN

THIS AREA
NO CONTENT IN

THIS AREA

10 © Rule Financial 2012

Workarounds

Use String, e.g. “2012-03-01”

Use java.util.Date with "normalized" components – like java.sql.Date does

but if your timezone changes by one hour, your date can change by one day

also, in some timezones, during a time change, there can be no midnight

Write your own class

Use Joda Time, e.g. LocalDate

Integration problems (JDBC, JPA, XML etc)

NO CONTENT IN THIS

LOGO 'EXCLUSION'
ZONE

ONLY MAIN AND

SECONDARY TITLES

IN THIS AREA

MAIN CONTENT

AREA

NO CONTENT IN THIS AREA

NO CONTENT IN

THIS AREA
NO CONTENT IN

THIS AREA

11 © Rule Financial 2012

What JSR-310 provides

Well designed, consistent, modern API, based on immutable classes

Two models of time: “machine” and “human”

Machine time

Computers treat time as a counter, based on some oscillator and some reference
point. Such time can be continuous or not.

Human time

Humans treat time as a set of predefined fields (year X, month Y, day Z, plus
maybe hour, minute, second).

NO CONTENT IN THIS

LOGO 'EXCLUSION'
ZONE

ONLY MAIN AND

SECONDARY TITLES

IN THIS AREA

MAIN CONTENT

AREA

NO CONTENT IN THIS AREA

NO CONTENT IN

THIS AREA
NO CONTENT IN

THIS AREA

12 © Rule Financial 2012

What JSR-310 provides

Machine time

javax.time.Instant – a point on the time-line with nanosecond precision; a
reference point is 1 Jan 1970 ("unix epoch").

javax.time.Duration – difference (in nanosec) between two Instants, can be
positive or negative

What can you do with these classes? Not that much.

You can compare two instances – which one was first
Can be used in logs, audits, etc

NO CONTENT IN THIS

LOGO 'EXCLUSION'
ZONE

ONLY MAIN AND

SECONDARY TITLES

IN THIS AREA

MAIN CONTENT

AREA

NO CONTENT IN THIS AREA

NO CONTENT IN

THIS AREA
NO CONTENT IN

THIS AREA

13 © Rule Financial 2012

What JSR-310 provides

Human time

javax.time.LocalDate – date w/o time and offset, e.g. 2007-12-03

javax.time.LocalTime – time w/o date and offset, e.g. 10:15:30

javax.time.LocalDateTime – date and time w/o offset,
 e.g. 2007-12-03T10:15:30

javax.time.ZoneOffset – offset against UTC (positive or negative),
 e.g. +05:00, +01:00, -02:00, +04:30, Z, CEST, UTC, GMT

javax.time.OffsetDate – date w/o time but with offset, e.g. 2007-12-
03+02:00

javax.time.OffsetTime – time w/o date but with offset, e.g. 10:15:30+02:00

javax.time.OffsetDateTime – date with time and offset,
 e.g. 2007-12-03T10:15:30+02:00

NO CONTENT IN THIS

LOGO 'EXCLUSION'
ZONE

ONLY MAIN AND

SECONDARY TITLES

IN THIS AREA

MAIN CONTENT

AREA

NO CONTENT IN THIS AREA

NO CONTENT IN

THIS AREA
NO CONTENT IN

THIS AREA

14 © Rule Financial 2012

What JSR-310 provides

Human time - cont.

javax.time.ZoneId – time zone identifier, e.g “Europe/Warsaw”
javax.time.ZonedDateTime - date with time with offset with time zone,
e.g. 2007-12-03T10:15:30+02:00[Europe/Warsaw]
javax.time.Period – time unit with mulitplier, e.g. “1 hour”, “5years”

NO CONTENT IN THIS

LOGO 'EXCLUSION'
ZONE

ONLY MAIN AND

SECONDARY TITLES

IN THIS AREA

MAIN CONTENT

AREA

NO CONTENT IN THIS AREA

NO CONTENT IN

THIS AREA
NO CONTENT IN

THIS AREA

15 © Rule Financial 2012

What JSR-310 provides

Other classes

javax.time.Clock – virtual clock, can be bound to system clock, or to fixed
time, can tick with more granular precision, e.g. tick by one second

javax.time.chrono.ISOChronology – standard Gregorian calendar (other can
be available too)

javax.time.Year, YearMonth, MonthDay, QuarterOfYear – representations
of a year (e.g. 2012), a month in a year (e.g. 2012-10), day of month (e.g. 15
października), quarter (e.g Q3 2012)
javax.time.format.DateTimeFormatter – date/time parser and formatter
...plus a set of more advanced classes (low- and high-level)

NO CONTENT IN THIS

LOGO 'EXCLUSION'
ZONE

ONLY MAIN AND

SECONDARY TITLES

IN THIS AREA

MAIN CONTENT

AREA

NO CONTENT IN THIS AREA

NO CONTENT IN

THIS AREA
NO CONTENT IN

THIS AREA

16 © Rule Financial 2012

Examples

Date without time component - e.g. 1 Mar 2012

 LocalDate firstMarch2012 = LocalDate.of(2012, 03, 01); //or:

 LocalDate firstMarch2012 = LocalDate.parse("2012-03-01");

Time without date component - e.g. 11:00

 LocalTime elevenAm= LocalTime.of(11, 00); //or:

 LocalTime elevenAm = LocalTime.parse("11:00");

NO CONTENT IN THIS

LOGO 'EXCLUSION'
ZONE

ONLY MAIN AND

SECONDARY TITLES

IN THIS AREA

MAIN CONTENT

AREA

NO CONTENT IN THIS AREA

NO CONTENT IN

THIS AREA
NO CONTENT IN

THIS AREA

17 © Rule Financial 2012

Examples

Time with vs time without offset, e.g. 11:00 vs 11:00 CEST

 LocalTime elevenAmNoZone = LocalTime.of(11, 0);

 OffsetTime elevenAmCest = OffsetTime.of(11, 0, ZoneOffset.ofHours(2));

 //or:

 OffsetTime elevenAmCest = OffsetTime.of(11, 0, ZoneOffset.of("+02:00"));

NO CONTENT IN THIS

LOGO 'EXCLUSION'
ZONE

ONLY MAIN AND

SECONDARY TITLES

IN THIS AREA

MAIN CONTENT

AREA

NO CONTENT IN THIS AREA

NO CONTENT IN

THIS AREA
NO CONTENT IN

THIS AREA

18 © Rule Financial 2012

Examples

A payment list for "October 2012" can be linked to

 YearMonth october = YearMonth.of(2012, Month.OCTOBER);

Duration – e.g. marathon record "02:03:38"

 //a bit problematic:

 Duration marathonTime =

 Duration

 .ofHours(2)

 .plus(3, LocalPeriodUnit.MINUTES)

 .plusSeconds(38);

NO CONTENT IN THIS

LOGO 'EXCLUSION'
ZONE

ONLY MAIN AND

SECONDARY TITLES

IN THIS AREA

MAIN CONTENT

AREA

NO CONTENT IN THIS AREA

NO CONTENT IN

THIS AREA
NO CONTENT IN

THIS AREA

19 © Rule Financial 2012

Examples

Virtual clock support – avoid System.currentTimeMillis()

 //bad:
 LocalDateTime now = LocalDateTime.now();
 //better:
 @Inject Clock clock;
 LocalDateTime now = LocalDateTime.now(clock);

 //possible injectors:

 clock = Clock.systemDefaultZone();

 clock = Clock.systemUTC();

 clock = Clock.systemZoneId("Europe/Warsaw");

 clock = Clock.fixedUTC(OffsetDateTime.parse("2012-10-

26T09:00Z").toInstant());

NO CONTENT IN THIS

LOGO 'EXCLUSION'
ZONE

ONLY MAIN AND

SECONDARY TITLES

IN THIS AREA

MAIN CONTENT

AREA

NO CONTENT IN THIS AREA

NO CONTENT IN

THIS AREA
NO CONTENT IN

THIS AREA

20 © Rule Financial 2012

Examples

What will happen if we add one year to 29 Feb 2004?

 LocalDate lastFebruary2004 = LocalDate.of(2004, 2, 29);

 LocalDate lastFebruary2005 = lastFebruary2004.plusYears(1); // 2005-02-28

What will happen if we add one month to 31 Mar?

 MonthDay lastMarch = MonthDay.of(3, 31);

 LocalDate lastMarchThisYear = lastMarch.atYear(2012);

 LocalDate lastMarchPlusMonth = lastMarchThisYear.plusMonths(1); // 2012-

04-30

NO CONTENT IN THIS

LOGO 'EXCLUSION'
ZONE

ONLY MAIN AND

SECONDARY TITLES

IN THIS AREA

MAIN CONTENT

AREA

NO CONTENT IN THIS AREA

NO CONTENT IN

THIS AREA
NO CONTENT IN

THIS AREA

21 © Rule Financial 2012

Examples

Date comparison logic, eg. does 1:30+02:00 == 2:30+03:00?

 OffsetTime oneThirty = OffsetTime.of(1, 30, ZoneOffset.ofHours(2));
 OffsetTime twoThirty = OffsetTime.of(2, 30, ZoneOffset.ofHours(3));

 oneThirty.equals(twoThirty); //false
 oneThirty.equalInstant(twoThirty); //true

NO CONTENT IN THIS

LOGO 'EXCLUSION'
ZONE

ONLY MAIN AND

SECONDARY TITLES

IN THIS AREA

MAIN CONTENT

AREA

NO CONTENT IN THIS AREA

NO CONTENT IN

THIS AREA
NO CONTENT IN

THIS AREA

22 © Rule Financial 2012

Examples

What will happen if we add one hour to 2012-10-28 02:15 (note – at 3:00 on that

day we'll move our clocks back by 1 hour, so we'll be back at 2:00)

 ZonedDateTime twoFifteen = ZonedDateTime.of(
 OffsetDateTime.of(2012, 10, 28, 2, 15, 0, 0, ZoneOffset.ofHours(2)),

 ZoneId.of("Europe/Warsaw")); //2012-10-
28T02:15+02:00[Europe/Warsaw]

 ZonedDateTime twoFifteenAfterOneHour = twoFifteen.plusHours(1);

 //2012-10-28T03:15+01:00[Europe/Warsaw]

 ZonedDateTime twoFifteenAfterOneHourFromInstant =

 ZonedDateTime.ofInstant(twoFifteen.toInstant().plusSeconds(3600),
 ZoneId.of("Europe/Warsaw")); //2012-10-
28T02:15+01:00[Europe/Warsaw]

NO CONTENT IN THIS

LOGO 'EXCLUSION'
ZONE

ONLY MAIN AND

SECONDARY TITLES

IN THIS AREA

MAIN CONTENT

AREA

NO CONTENT IN THIS AREA

NO CONTENT IN

THIS AREA
NO CONTENT IN

THIS AREA

23 © Rule Financial 2012

Why proper date/time modeling is important

Use case: a timetracking system. A user in Poland entered a work time:
1st Oct 2012, 9:00-17:00

Now this user (or his/her manager) moves to a different time zone (say NY time,

which is -04:00). What should they see?

if modeled as LocalDateTime – no change, it's still 9-17

if modeled as Offset/ZonedDateTime – possibly no change, 9-17, but with notice
"this is in Poland timezone"
if modeled as Instants – it's displayed in NY timezone as 3AM – 11AM

Also, be careful how it gets translated to the database

and what if you relocate DB to a different timezone?

NO CONTENT IN THIS

LOGO 'EXCLUSION'
ZONE

ONLY MAIN AND

SECONDARY TITLES

IN THIS AREA

MAIN CONTENT

AREA

NO CONTENT IN THIS AREA

NO CONTENT IN

THIS AREA
NO CONTENT IN

THIS AREA

24 © Rule Financial 2012

JSR-310 vs Joda Time

JSR-310 is a "better Joda Time"

Joda Time has some problems and design mistakes - see
http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html
Stephen Colebourne, creator of Joda, is also the lead of JSR-310.

Joda has two basic concepts: Instant and Partial. JSR-310 has machine and human

time. The relationship is not 1:1, e.g. Joda's DateTime is an Instant in Joda but it's not

the same as Instant in JSR-310.

Joda is mature and stable, recommended for production usage. ThreeTen is not yet

stable enough.

http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html
http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html
http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html
http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html
http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html
http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html
http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html
http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html
http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html
http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html
http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html

NO CONTENT IN THIS

LOGO 'EXCLUSION'
ZONE

ONLY MAIN AND

SECONDARY TITLES

IN THIS AREA

MAIN CONTENT

AREA

NO CONTENT IN THIS AREA

NO CONTENT IN

THIS AREA
NO CONTENT IN

THIS AREA

25 © Rule Financial 2012

JSR-310 – module size

For Java EE, library size does not matter – bigger API can be useful

For Java ME, size is critical – all the helper methods like "plusMonths()" are

problematic

Different solutions are being currently considered

NO CONTENT IN THIS

LOGO 'EXCLUSION'
ZONE

ONLY MAIN AND

SECONDARY TITLES

IN THIS AREA

MAIN CONTENT

AREA

NO CONTENT IN THIS AREA

NO CONTENT IN

THIS AREA
NO CONTENT IN

THIS AREA

26 © Rule Financial 2012

Summary

JSR-310 – available in Java 8

Project ThreeTen – reference implementation (can be also run on Java 7)

Don't use java.util.Date/Calendar! Use Joda Time (and in the future, use JSR-310)

Never use System.currentTimeMillis() inside business logic

Use ISO standard to format dates and times when exchanging between systems

