
Why We Need
Architects (and

Architecture) on
Agile Projects

Rebecca Wirfs-Brock
rebecca@wirfs-brock.com

©2012 Wirfs-Brock Associates

mailto:rebecca@wirfs-brock.com

Three Questions…

• How much architecting do you need and
when?

• How can you manage architecture risk on
small as well as large, complex projects?

• What is the role of an agile architect?

Agile Design Values

• Core values:
– Design Simplicity
– Communication
– Teamwork
– Trust
– Satisfying stakeholder needs

• Constant learning

Agile Architecture Values

• Designed for test
• Modular
• No unintentional data redundancy or

overlapping functionality
• Pragmatic. Does what it needs to without

extras
• Supports performance, reliability,

modifiability, usability,….goals.

How Much Architecting Do You Need?

Alistair Cockburn’s project characteristics grid

What’s a Small Project?

• A team of 6-8
• Working on non-life critical

projects
• Architecture typically

evolves along with
implementation without
much risk

• May or may not need extra
architecture attention

Small Project Architecture Practices

• Design “Spikes”
– Goal: Figure out a

design approach.
– Time: Few hours to a

few days.
– Tools: CRC Cards,

exploratory coding,
whiteboard
sketching.

Small Project Architecture Practices

• Experiment on
Branches
– Goal: Experiment away

from main code branch.
– Time: Few hours to a

few days.
– When done: Merge or

throwaway branch
code.

Small Project Architecture Practices

• Incrementally refine
abstractions
– Goal: Refactor to

eliminate redundant
code.

– Time: Few minutes.
– When done:

Whenever you spot
duplication.

Small Project Architecture Practices

• Monitor technical debt.
– Term invented by Ward

Cunningham.
– Piles up when you

continually implement
without going back to
reflect new
understanding.

– Can have long term costs
and consequences.

All Tasks Aren’t Alike

• The Core—fundamental to
your software’s success

• The rest—requires far less
creativity or inspiration

• The Revealing—lead to new,
deeper understanding
– Always a surprise
– Require invention and innovation
– Hard to predict when they will be

done

Keeping Architecture in Mind

• Sort tasks into “problem buckets”: core and the
rest

• Make sure each iteration gets enough core work
accomplished

• Get team involved on core issues

• Use post-iteration reflections to ask why things
were harder than they first appeared

• Break out of planned iteration cycles to tackle
revealing problems (they need more than a quick
design spike)

Architectural Practice

• Reduce Technical Debt
• Integrate new learning

into your code
– Refactoring
– Redesign
– Rework
– Code clean up

• Unit tests
• Coding standards
• Consistent

implementation practices
(API use, errors, logging…)

THE MORE THERE IS TO
COORDINATE

The Bigger the Project….

Team Size Matters
• >9 and any group splits

into teams
• No one knows everything

or everybody
– Expertise uneven
– Skills varied
– Specialists

• Work needs coordination
• Architecture allowed to

“naturally” emerge often
reflects the
organizational structure

Types of Project Risks

• Schedule & budget
• Operational

– execution
– resources
– communications

• Technical
– too complex
– poorly defined
– misunderstood

Risk Management Strategies

• Avoid
• Share: Insure or transfer
• Retain: Accept and budget for
• Reduce: Mitigate

– Develop incrementally
– Integrate often
– Design Innovate

THE LAST POSSIBLE MOMENT

Especially on Large Projects, Some Decisions are too
Important to Leave Until

Agile Misconception: Upfront Thinking,
Planning, Investigating, Architecting is

Wasteful

• A reaction to “too much” thinking without
“doing”.

• Reality:
– You need to strike a balance: Find the right time and

effort for your project
• Some upfront planning is critical for large, complex projects
• Ongoing thinking, prototyping, and architecture experiments

are important too.

CHOOSE THE MOST RESPONSIBLE
MOMENT

A Better Way to Act:

Stuart Brand’s Shearing Layers
• Buildings are made of components that evolve

at different timescales.
• Layers: site, structure, skin, services, space

plan, stuff. Each layer has its own value, and
speed of change (pace).

• Buildings adapt because
faster layers (services) are
not obstructed by slower
ones (structure).

—Stuart Brand, How Buildings Learn

http://www.laputan.org/images/figures/shearing-layers.gif

Yoder and Foote’s
Software Shearing Layers

“Factor your system so that artifacts that change at similar rates
are together.”—Foote & Yoder, Ball of Mud Pattern

• The platform
• Infrastructure
• Data schema
• Standard frameworks and components
• Abstract classes and interfaces
• Classes
• Code
• Data

Layers Slower

Faster

Agile Design Values

• Respect your system’s shearing layers.
– Understand the rates of what changes.

• Make what is too difficult, time consuming, or
tedious easier.
– Create tools, leverage design patterns, build or use

frameworks, use data to drive behavior…

• Don’t overdesign!!!
• Don’t under architect.

Being Agile Does Not Mean

• Good architecture simply emerges from
“good” development practices. Sometimes
you need to do more

• TDD answers all your design/architecture
problems

• You can make significant architecture changes
at the last moment

Architecture Debt

• Compromises in the
system that have
significant impacts.

• Not isolated.
• Costly to reverse.
• Examples:

– reliance on a poorly
designed framework

– inconsistent service
interfaces

Architecture Risk Reduction Tools
• Project/product road maps and timelines
• Landing zones
• Design innovation spikes
• Architecture spikes
• Risk reduction backlogs
• Set-based design

Component
Design Choices

Design Cycle Decision to Eliminate

x
x

x

Product Roadmaps As Guides

• Where you expect
to go.

• What features and
when? Relative
time when feature
is needed.

• Influence
architecture work
and efforts.
 Sherwood, Oregon

Portland International Airport

A Project Landing Zone

A range of measurable attributes that must be
achieved to declare project or product success

•Each requirement in the landing zone has a
range of acceptable values: Minimum, Target,
and Outstanding

•Multi-dimensional success criteria

•Minimum can seem unacceptable in isolation;
but not when you consider everything

Hypothetical Landing Zone for a
Smart Phone

Attribute Minimum
acceptable Target Outstanding

Battery life - standby 300 hours 320 hours 420 hours

Battery life - in use 270 minutes 300 minutes 380 minutes

Footprint 2.5 x 4.8 x .57 2.4 x 4.6 x .4 2.31 x 4.5 x .37

Screen size 600 x 400 600 x 400 960 x 640

Digital camera
resolution 8 MP 8 MP 9 MP

Weight 5 oz 4.8 oz 4 oz

Agreeing on Landing Zone Targets

• Someone makes a first “rough cut”
• Base targets on history & evidence
• Discuss and fine-tune as a group

– product manager, architects, QA leads

• Informed consensus-building

Landing Zone Precision & Granularity

Attribute Minimum Target Outstanding

Data Quality:
Accuracy (percent in
error) for critical
attributes

<2.5%

1.5%

0.5%

Performance:
xxx transactions per
hour

60,000

75,000

100,000

Usability: Learning
time xxx management
system tasks by a
new quality analyst

< 16 hrs

8 hrs

4 hrs

Use to identify and
manage:

Landing Zone Uses

• Identify and manage
• Potential risks
• Innovations required
• Skills to be acquired
• …

Photo by e.r.w.i.n. Used with attribution
http://www.flickr.com/photos/eherrera/5104896694/

Landing Zones on Agile
Projects

• Helps make sense of
the bigger picture:
– What happens when

one attribute edges
below minimum?

– When will targets be
achieved?

– What do we need to
do architecturally to
achieve targets?

Design Innovation Spike

• Answers deep
questions about
potential solutions
for achieving
landing zone
targets

• Not as tactical or
incidental as an XP
Design Spike

What You Do In an Innovation Spike

– prototyping
– design noodling
– looking outside
– experimenting
– modeling
– vet ideas

Example Innovation Spikes

• Business transaction redesign
• Document parsing
• Fact representation & rule simplification
• Automated location of external resources
• …
• Scale up, scale out, re-distribute, re-think…

• Try out radical changes in how things are done

Design Innovation Spike Best Practices

• Small, smart, goal-oriented
teams
– avoid us vs. them mentality

• Evidence-based answers
– working prototypes
– existing similar things

• Failure is an option
– permit answers that shift

goals

Criteria For an Architecture Spike:
Answer Bounded Questions

• Buys information
– Feasibility
– Rework effort
– Reasonable design

approach
– Alternatives

• Better estimates
• Actionable

Ways To Manage Architectural Tasks

Architecturally
meaty feature

Design spike
related task

Architecture
investigation

Prototype Framework
development

Roadmap
exploration

What Can Go On An Architecture
Backlog?

WHAT DO AGILE ARCHITECTS DO?

The Agile Architecture Landscape

Agile Architecture Wayfinding

• Scouting—looking
enough ahead

• Exploring potential
paths
– Short experiments
– Extrapolations
– Conclusions based

on experience,
intelligence
gathered &
intuition

• Explaining and
selling architectural
ideas

Differences Between Agile and Traditional
Architecture

Traditional
• Big picture thinking
• Produces Models and

blue prints
• Not so hands-on
• Focused on

compliance

Agile
• Balances big picture &

details
• Produce what’s needed to

make informed decisions
• Hands-on
• Focused on sustainability

47

Models
“Big M” vs. “little m”

• Lots of time invested
• Intended to last
• “Definitive”
• Usually formal
• May not be widely used

or understood

• Not a lot of time invested
• Intended to communicate
• Often discarded
• Can be formal or informal
• Made to be viewed

Agile architects create models as needed

Model
Maintain problem
related info

Broadcast change
notification

View
Render the model

Transform
coordinates

Model

Controller

Controller
Interpret user input

Distribute control

Model

View

“A Laboratory For Teaching  Object-
Oriented Thinking,”
Kent Beck, Apple Computer, Inc., Ward
Cunningham, Wyatt Software Services,
Inc.
OOPSLA 89

CRC Cards: A “little m” model
The First CRC Cards

Example:
Component Responsibility Descriptions

Application
Support

Business
"Applications"

Allowed to
use

Attribute
Defintion

Business
Rule Customer xxx Price

Definition Offering Term

Underwriting Sourcing Note
Custody Pooling Payment

Management Default Relationship xxx

Data Import/Export xxx xxx xxx Reporting Fraud
Management

Loan Account Contract Agreement xxx xxx xxxBusiness
Infrastructure

Attribute
Defintion

Key
Business
Subysystem

“The Customer component is responsible for knowing the organizations and
individuals. It includes authentication and role-based authorization for detailed
tasks and contact information for organizations.”

Example:
Database
“Responsibilities”

Values Important to Agile Architects
• Balance
• Testable

architectural
qualities

• Being hands-on
– programming,

designing, reading
code, building
things…

• Sustainable
development

Sustainable
Architecture

• Stewardship
– Follow through
– Ongoing attention
– Not ignoring the little things that

can undermine our ability to grow,
change and adapt our systems

Indicators You’ve Paid Enough
Attention to Architecture

• Developers can easily add new functionality.
• New functionality doesn’t “break” existing

architecture.
• Stable interfaces.
• Consistency.
• Few areas that developers avoid because they are

too difficult to work in.
• Defects are localized.
• Able to incrementally integrate new functionality.

55

	Why We Need Architects (and Architecture) on Agile Projects
	Three Questions…
	Agile Design Values
	Agile Architecture Values
	How Much Architecting Do You Need?
	What’s a Small Project?
	Small Project Architecture Practices
	Small Project Architecture Practices
	Small Project Architecture Practices
	Small Project Architecture Practices
	All Tasks Aren’t Alike
	Keeping Architecture in Mind
	Architectural Practice
	The More there is to Coordinate
	Team Size Matters
	Types of Project Risks
	Risk Management Strategies
	The Last Possible Moment
	Agile Misconception: Upfront Thinking, Planning, Investigating, Architecting is Wasteful
	Choose the Most Responsible Moment
	Stuart Brand’s Shearing Layers
	Yoder and Foote’s�Software Shearing Layers
	Agile Design Values
	Being Agile Does Not Mean
	Architecture Debt
	Architecture Risk Reduction Tools
	Product Roadmaps As Guides
	A Project Landing Zone
	Hypothetical Landing Zone for a Smart Phone
	Agreeing on Landing Zone Targets
	Landing Zone Precision & Granularity
	Landing Zone Uses
	Landing Zones on Agile Projects
	Design Innovation Spike
	What You Do In an Innovation Spike
	Example Innovation Spikes
	Design Innovation Spike Best Practices
	Criteria For an Architecture Spike:�Answer Bounded Questions
	Ways To Manage Architectural Tasks
	Slide Number 40
	Slide Number 41
	Slide Number 42
	What Can Go On An Architecture Backlog?
	What do Agile architects do?
	The Agile Architecture Landscape
	Agile Architecture Wayfinding
	Differences Between Agile and Traditional Architecture
	Models�“Big M” vs. “little m”�
	Slide Number 49
	Example:�Component Responsibility Descriptions
	Example: Database “Responsibilities”
	Values Important to Agile Architects
	Sustainable Architecture
	Indicators You’ve Paid Enough Attention to Architecture
	Slide Number 55

