
Reversed Tests PyramidReversed Tests Pyramid

Wiktor Żołnowski

@streser

http://www.agileszkolenia.pl

http://codesprinters.com 

http://codesprinters.com/


Can you imagine perfect software?





Tests pyramid

Unit Tests

Functional/Integration Tests

End to End Tests



But...

It would be perfect to work with perfect 
software every day...

Our everyday work looks a little bit 
different...



It's called...

Legacy Code



First of all...

How did we get to this point?



It's all because of the Technical Debt



Is it possible to pay Technical Debt back?



Technical Debt is evil!

● Success in Software Development is something which is not 
continuous...

● Success is state that you can achieve but also lose very fast if you 
can't respond to changes fast enough...



Reversed Tests Pyramid

End-to-End Tests

Functional/Integration Tests

Unit Tests



Now refactor...

● High level tests gives you courage to refactor your code...
● Now you can write some Unit Tests...
● Do it step by step...
● Cover your functionality with Unit Tests...



But.. There are few reasons why you 
shouldn't reverse tests pyramid

● End-To-End tests are too long...



● End-to-end tests are difficult to maintain...
● If we need end-to-end tests we are probably doing something wrong 

with our architecture...



So it's all about reversing back our tests 
pyramid.



But...

● Remember that creating reversed tests pyramid and reversing it back 
will take some time...

● You need to deal with it if you want to pay back your technical debt...



Few final thoughts...

Keep your technical debt as low as possible and try to pay 
it back every time you can. For example use your slack 

time for that!



Few final thoughts...
Beware of refactoring just for refactoring!



Few final thoughts...

● Beware of refactoring just for refactoring!
● Resist temptation to re-write from scratch – history is against you, 

such projects usually fail.
● Remember to always remove your (duplicated) tests!
● Software quality in many cases could be understood as ability to 

introduce changes into software!
● Keep your technical debt as low as possible and try to pay it back 

every time you can. For example use your slack time for that!

Resist temptation to re-write from scratch – 
history is against you, such projects usually fail.



Few final thoughts...

● Beware of refactoring just for refactoring!
● Resist temptation to re-write from scratch – history is against you, 

such projects usually fail.
● Remember to always remove your (duplicated) tests!
● Software quality in many cases could be understood as ability to 

introduce changes into software!
● Keep your technical debt as low as possible and try to pay it back 

every time you can. For example use your slack time for that!

Remember to always remove your (duplicated) 
tests!



● Software quality in many cases could be 
understood as ability to introduce changes into 

software!



Wiktor Żołnowski
www.agileszkolenia.pl

Questions?


	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22

