#### Najnowsze mechanizmy w DHCP BIND10 DHCP oraz prace w IETF

#### The Newest DHCP Mechanisms BIND10 DHCP and IETF work

#### PLNOG10, Warsaw, Poland 1 March 2013

Tomek Mrugalski <tomasz(at)isc.org>



#### Agenda

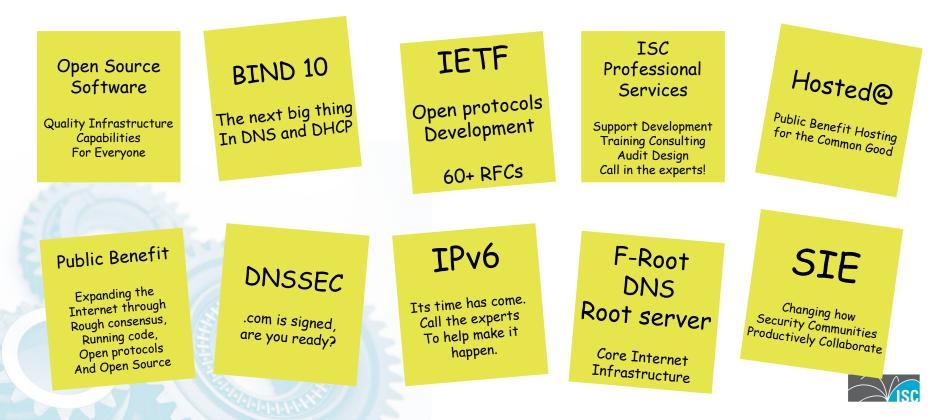
1. About presenter and ISC

#### 2. DHCP in BIND10 (codename Kea)

- Reasons
- Status
- Roadmap
- 3. Performance

4. DHCP in IETFDHCPv6 Failover




### Who is Tomek?

- M.Sc., Ph.D from Gdansk University of Technology
- Primary author of Dibbler
  - Portable DHCPv6 implementation (srv, cli, relay)
  - Supports Win 2k-Win8, Linux, BSD, Solaris
  - Confirmed use in 34 countries
- 7 years at Intel (Network Quality Labs, chipsets group)
- 2 years at ISC
  - Lead Developer of BIND10 DHCP (Kea)
  - Occasional contributor to ISC-DHCP
- Active IETF participant since 2009
  - 2 RFCs, 15+ drafts



#### Who is ISC?

Internet Systems Consortium, Inc. (ISC) is a non-profit 501(c)(3) public benefit corporation dedicated to supporting the infrastructure of the universal connected self-organizing Internet - and the autonomy of its participants - by <u>developing and maintaining</u> core production quality <u>software</u>, protocols, and operations.



# **BIND10 DHCP**



# **Why DHCP rewrite?**

- Existing code is 17 years old
- Hardware changed (many cores)
- Networks changed
- DHCP landscape changed
- New software development techniques
- Lacking performance
- Monolithic
- Documentation is lacking
- Complex code, difficult to extend



#### BIND10 DHCP Codename Kea

- Common infrastructure with BIND10 DNS
  - On-line configuration
  - Logging
  - Statistics
- Performance is essential
- IPv6 is a first class citizen, not add-on
- C++ as a language of choice
- Multi-core support
- Switchable backends (mem+file, SQLite, MySQL, ...)
- Hooks
- Modular
- Resiliency (fault isolation and recovery)





#### Kea: Current status (1)

#### DHCPv4 server (b10-dhcp4)

- Supports DORA
- Relayed traffic only

#### DHCPv6 server (b10-dhcp6)

- Supports SARR
- Direct traffic only
- Address assignment, renewal, release, expiry
- On-line configuration (common for all BIND10)
- Switchable backends: MySQL, memfile
- Custom option definitions
  - Standard options
  - Custom formats
  - Nested options
  - Option namespaces



#### Kea: Current status (2)

DHCPv4 server (b10-dhcp4)

DHCPv6 server (b10-dhcp6) Performance Tool (stand alone)

#### libdhcp++

- general purpose DHCP library

- v4/v6 packet parsing/assembly
- v4/v6 options parsing/assembly
- interface detection (Linux, other OSes planned)

- socket management



#### Kea: Work to Date (2)

- Documentation
  - BIND10 Guide
  - BIND10 Developer's Guide
  - Man pages
- Designs
  - Hooks
  - Lease/database design
  - Option Definition Design

http://bind10.isc.org/docs/bind10-guide.html http://bind10.isc.org/wiki/Kea



# **DHCP Performance**



#### Perfdhcp and BIND10 DHCP?

Why did we implement perfdhcp first?

#### Performance is essential in BIND10 DHCP





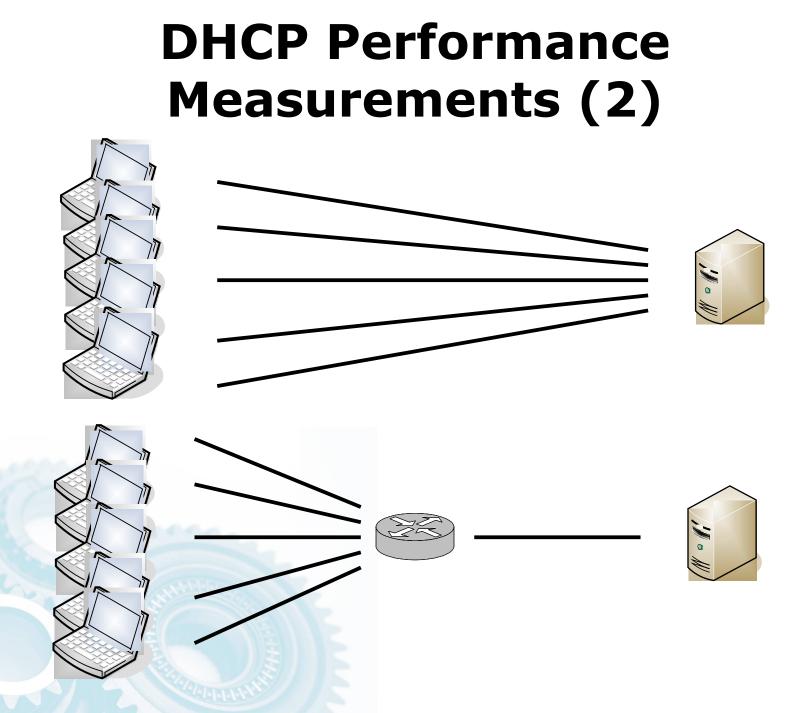
#### DHCP Performance Problem Space

Vendors often provide performance results, why measure it again?

- Marketing data is always trustworthy, right?
- Your HW may differ from reference HW(CPU, disk, fs, OS,...)
- -Your traffic model may differ

Conclusion:

The most reliable measurements are *your own*.




#### DHCP Performance Measurements (1)











### **Perfdhcp :: Overview**

- No feasible alternatives
  - are outdated (e.g. v4 only)
  - commercial (dedicated test HW is \$\$\$\$)
- Need a tool that is:
  - Flexible (lots of options and knobs)
  - Portable (Linux, BSD, perhaps Solaris)
  - Test any conformant implementation
  - Free (open source)
- Started project on our own



#### **Perfdhcp :: Status**

- Open source (ISC), currently Linux, but BSD and Solaris planned
- DHCPv4 & DHCPv6 (2-way & 4-way exchanges)
- Support for packet template files (optional)
- Server/interface selection (multicast/unicast)
- Parameterized traffic/test
  - # of clients,
  - # of transactions/sec,
  - best effort test,
  - test duration,
  - number of requests,
  - max number/% of drops ...
- Diagnostics selector
- Measurements

```
Rate: 986.6 exchanges/second, expected rate:
***Statistics for: SOLICIT-ADVERTISE***
sent packets: 9866
received packets: 9866
drops: 0
orphans: 0
min delay: 0.168 ms
```

```
avg delay: 0.263 ms
max delay: 0.655 ms
std deviation: 0.039 ms
```

#### perfdhcp

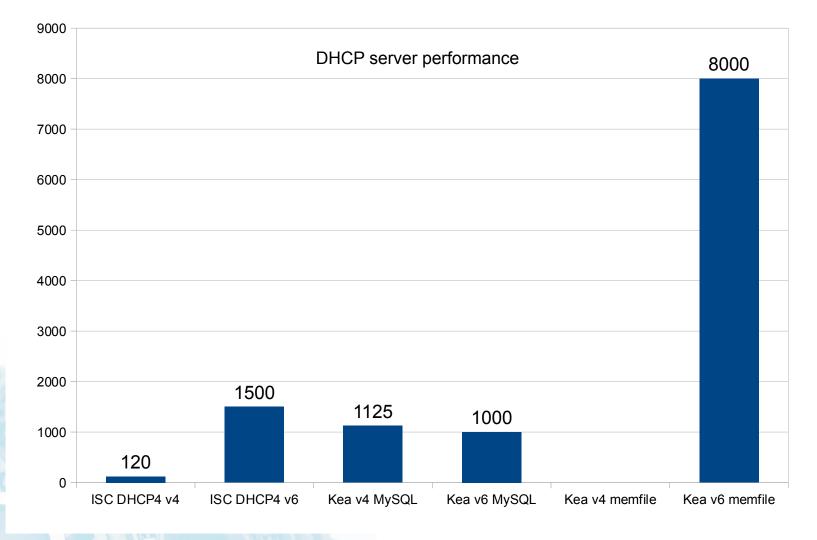
```
[-hv] [-4|-6] [-r<rate>] [-t<report>] [-R<range>] [-b<base>]
[-n<num-request>] [-p<test-period>] [-d<drop-time>] [-D<max-drop>]
[-l<local-addr|interface>] [-P<preload>] [-a<aggressivity>]
[-L<local-port>] [-s<seed>] [-i] [-B] [-c] [-1]
[-T<template-file>] [-X<xid-offset>] [-0<random-offset]
[-E<time-offset>] [-S<srvid-offset>] [-I<ip-offset>]
[-x<diagnostic-selector>] [-w<wrapped>] [server]
```

### Perfdhcp :: Roadmap

#### 2013: No specific plans (unfunded)

- Implement support for Prefix Delegation
- Relays
  - Traffic via relays
  - Relay options (subscriber-id, remote-id,...)
  - DOCSIS3.0 options
- Expand customization
- Improve response validation

#### Long term: maintain and develop




# Kea :: Performance Results(1)

- Server run on a beefy server
  - HP ProLiant DL360 G7
  - Intel(R) Xeon(R) CPU E5649 (24 logical CPUs)
  - 72GB ram
  - HP Smart Array P410i + 10k rpm disks
- Client traffic generated by perfdhcp
- Performance may go...
  - ...up (optimizations, multi-core)
  - ...down (new features)



### Kea :: Performance Results (2)

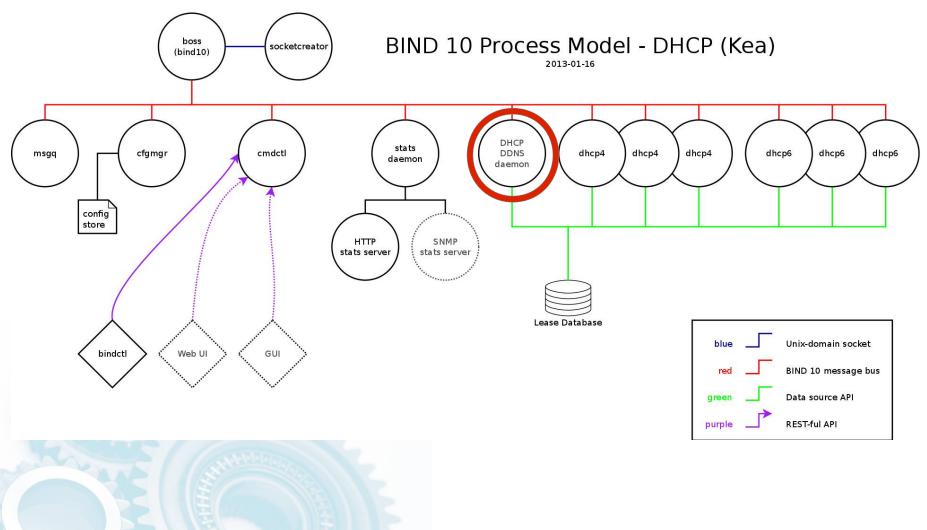


\* initial data. Your mileage may vary.



#### **Kea Plans**




### 2013 Kea Roadmap

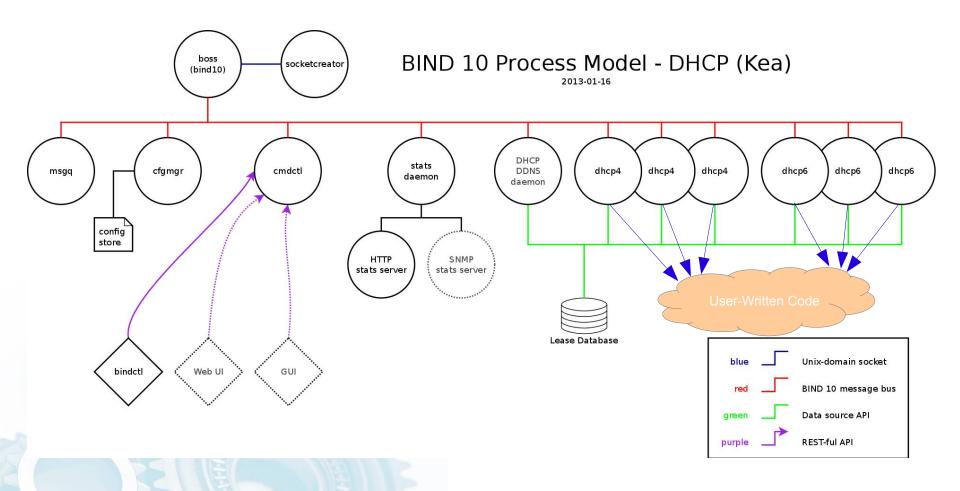
- Support for directly-connected IPv4 clients
- Support for IPv6 relays
- DDNS daemon
- Hooks
- Extend OS support to BSD, Solaris (?)





### DHCP DDNS Daemon (1)






# DHCP DDNS Daemon (2)

- Will handle addition/removal of name/address translations from forward and reverse DNS zones
- Separate process in keeping with BIND 10 philosophy
- Approach to be decided during design stage some prototyping needed.



# DHCP Hooks (1)



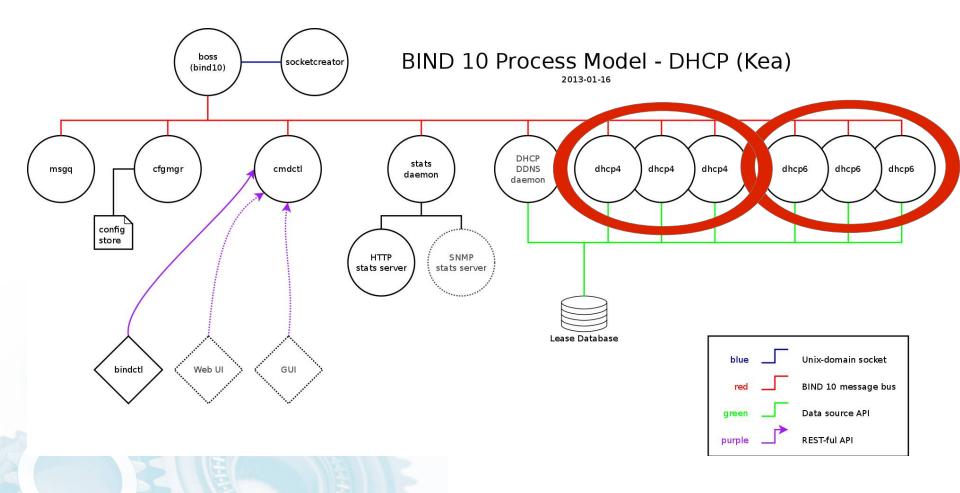


# DHCP Hooks (2)

- Set of hooks to be included in the code:
  - Call out to user code at defined points in packet processing
  - Replaces "conditional" configuration processing in DHCP4
- API designed
- Comments are more than welcome http://bind10.isc.org/wiki/DhcpHooks



#### **Possible features**


#### **Unfunded ideas**

- Multi-core support
- Prefix delegation in DHCPv6
- DHCPv6 failover
- DHCPv4 failover
- Different backends (Postgres? Cassandra?)
- CPE market





# Multi-Core Capability (1)





# Multi-Core Capability (2)

- Aim to prototype different solutions before choosing one
- E.g. possible solution for scalability:
  - Divide queries between multiple processes
  - Receptionist process to route packets from a given client to the same daemon process to cope with state issues.



#### Interested?

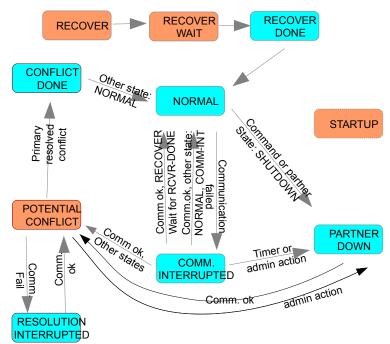
#### Fully open source model

- Available for free (no strings attached)
- GIT repo, trac tickets available
- Test, report bugs
- Submit patches

#### Contribute

- We are looking for sponsors (money and developers)
- Development contracts
- Review design documents (e.g. requirements)






# **DHCP in IETF**



#### **DHCPv6 Failover :: Overview**

- Based on v4 failover draft, but simplified
- Hot standby (Active-passive only)
- No load balancing in design spec (likely extension, some provisioning ready, trying to have common state machine for base and LB)
- Major topics:
  - MCLT concept, Lazy Updates
  - state machines
  - Binding updates
     + conflict resolution
  - Connection management
  - 2 Allocation Algorithms (Proportional and Independent)
  - DDNS considerations
  - Lease reservation





#### **DHCPv6 Failover Grand Plan**

- **Step 0:** Redundancy considerations
  - Published as RFC6853 (Feb. 2013)
- **Step 1:** Requirements document (info)
  - WGLC done, to be published soon
  - Comments welcome
- **Step 2:** Design document (std)
  - WG item, published -02
  - Text complete (no major missing parts)
  - Comments welcome
- **Step 3:** Protocol document (std)

– TBD

• Possible extension drafts



### IPv4 provisioning in IPv6-only network

- **MAP** (Mapping Address and Port, DS-Lite successor)
  - Fully stateless (does not require per-session or persubscriber state)
  - Draft-ietf-softwire-map-dhcp
- LW406
  - draft-cui-softwire-b4-translated-ds-lite

#### DHCPv4-over-IPv6

draft-ietf-dhc-dhcpv4-over-ipv6

Attempts to unify/clarify:

- draft-rajtar-dhc-v4configuration,
- draft-bfmk-softwire-unified-cpe



# **DHCPv6 in IETF**

#### • DHCPv6 Stateful Issues

- draft-ietf-dhc-dhcpv6-stateful-issues
- RFC3315bis planned
- MAC vs DUID issue (dual-stack clients parity)
  - draft-ietf-dhc-dhcpv6-client-link-layer-addr-opt
- DHCPv6 Radius Option
  - Draft-ietf-dhc-dhcpv6-radius-opt
- DHCPv6 Load Balancing
  - draft-ietf-dhc-dhcpv6-load-balancing
- Multiple Provisioning domains
  - Whole Homenet WG
- Routing configuation over DHCPv6
  - draft-ietf-mif-dhcpv6-route-option
  - dying slowly...



# Questions?



### Thank you

isc.org



# backup



#### Failover Design :: Communication

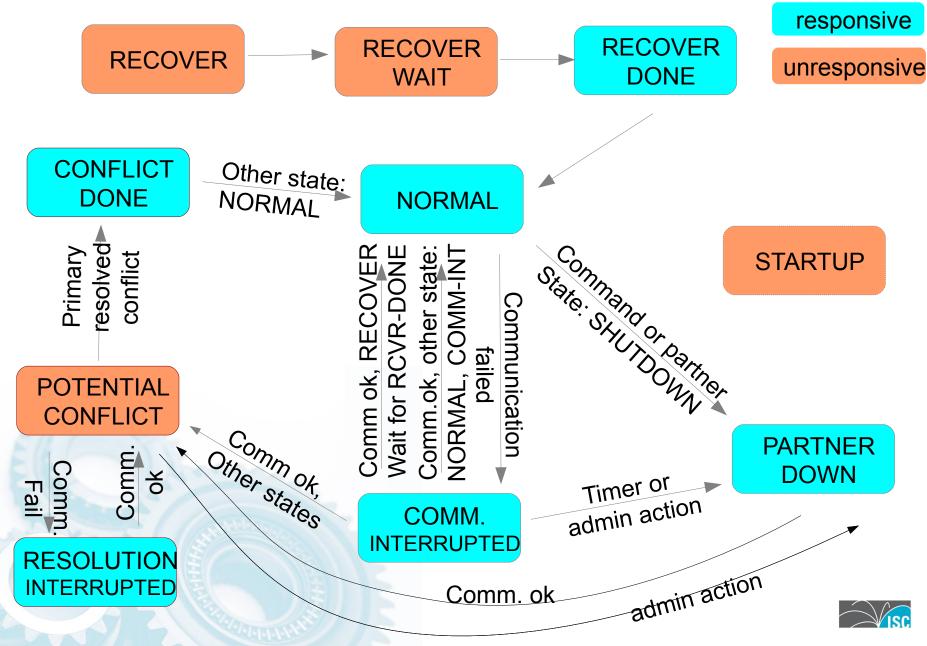
- 1. Communication over TCP
- 2. Reusing bulk leasequery framing, but with new FO-specific message types
- 3. TLS usage (optional)
- 4. Connection management (CONNECT, CONNECTACK, DISCONNECT)
- 5. State notifications
- Lease updates (BNDUPD, BNDUPDALL, BNDACK, UPDDONE)
- 7. Pool requests (POOLREQ, POOLRESP)
- 8. Keep alive (CONTACT)



#### **Failover Design :: Resource Allocation**

1.Proportional allocation ("IPv4 failover-style")

- 1. Useful for limited resources (e.g. prefixes)
- 2. Pool may need to be rebalanced.
- 3. Only unleased resources are owned by specific server.
- 4. Released/expired resources return to primary
- 2. Independent allocation ("simple split")
  - 1. Useful for vast resources (e.g. /64 address pool)
  - 2. All resources are owned by specific server.
  - 3. Pools are never rebalanced.
  - 4. Released/expired resources return to its owner.
  - 5. Simpler, but MCLT restrictions still apply.




#### Failover Design :: MCLT concept & Lazy update

- 1. Lazy Update:
  - 1. Server assigns a lease and responds to a client
  - Server updates its partner at a later time (lockstep would introduce too much delay)
     Problem: failure between 1. and 2.
- 2. Maximum Client Lead Time
  - The maximum difference between lease time known by a client and acknowledged by its partner.
- 3. Useful in communications-interrupted
  - Server does not know if its partner extended any lease;
  - It knows that its parter could extend by at most MCLT;
  - To be on the safe side, server assumes that ALL leases were extended by MCLT.



#### Failover Endpoint (partner) State Machine

