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an overview of technologies helping to create a 

scalable and efficient service quickly

Cheating the project 

management triangle



Project management triangle with 

constant budget
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Solution for the lazy
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WTH?

– Binary protocols are fast

• Try to make fast server with XML! :)

– Managing binary protocols is hard

• Is it?

• Can it be easier?

– Web API should be language independent

• Binary in PHP?

• Little Endian vs. Big Endian



So why Thrift?

– Language support:

• C/C++/D, PHP, Java, Erlang, Perl, Python …

– Why to write it, if you can generate it?

– Stand alone server! 

• No tomcat BS.

– To good to be true?
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Implementation Step 1 / 3 - Design

namespace java pl.allegro.example.server

typedef i64 Timestamp

service ExampleService {

Timestamp ping(),

}
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Implementation Step 2 / 3 – Gen gen

thrift --gen java ping.thrift
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<dependency>      

<groupId>slf4j-api</groupId>      

<artifactId>slf4j-api</artifactId>      

<version>1.5.10</version>    

</dependency>    

<dependency>      

<groupId>libthrift</groupId>      

<artifactId>libthrift</artifactId>      

<version>0.2.0</version>    

</dependency>



Implementation Step 3 / 3 – Coding
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Deployment – Step 1/2
<plugin>        

<groupId>org.apache.maven.plugins</groupId>        

<artifactId>maven-shade-plugin</artifactId>        

<executions> 

<execution>            

<phase>package</phase>            

<goals> <goal>shade</goal> </goals>          

</execution>        

</executions>        

<configuration> <finalName>

${artifactId}-${version}-with-dependencies

</finalName></configuration>      

</plugin>
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Deployment – Step 2/2

> mvn clean install

> java –jar PingService-1.0-with-dependencies
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So how to solve our problem?
namespace java pl.allegro.example.server

typedef i64 Timestamp

struct ApiObject {    

1: i64 id,    

2: string name,    

3: string description,    

4: list<string> images,

}

struct ApiSearchResult {    

1: list<ApiObject> products,    

2: i64 totalHits

}

service PrototypeService {    

Timestamp ping(),

ApiObject getById (1: i64 id),

ApiSearchResult search (1: string query, 2: i32 page, 3: i32 limit),    

}
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When DB is not enought.

Cassandra for example?
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Why Db is not good for our cause?

• Db is heavy

• Downsides of transactions

• Select via index vs Memcached

• Db is unpredictable

• Heavy queries can lock tables

• Db maintenance queries can become heavy
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NoSQL for the rescue!
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Cassandra

• Thrift based Service

• Cluster of agents – Ring

• The data is stored on hard disk and memory (via cache)

• The data distribution is configured

• It can be requested to have data copied on each server or just on 

a part of them

• Many options of data storage
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Cassandra in practice

• Keep same data on every node

• Deploy Cassandra near the API server – same machine is 

the best

• Keep the data in the scheme simple

• The bigger cache, the better

• Help Cassandra to keep things in cache
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Example deployment
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C-1-1 C-2-1

C-1-2 C-1-3 C-1-4 C-2-2 C-2-3 C-2-4

API-1-1 API-1-2 API-1-3 API-1-1 API-1-2 API-1-3



getById() algorithm

1. Get the byte[] data from the Cassandra by ID

2. If there is no data, throw an exception, that object is not 

found

3. Unserialize the data as Java object

4. If it isn’t Thrift class object, translate the data to a 

Thrift object

5. Return the object
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Solr

Let sphinx be a relic
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There was a Sphinx

- Popular and well known search engine

- Speed gained by very simple use only

- Really bad debug support

- Command line tools only

- No good build-in replication method

- Bad support for connection pooling
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Solr

- Web based administration panel with statistics, options 

and query tool

- Extendable by hook-like plugins

- Many build in features

- Highlights

- Spellchecking

- Rich schema possibilities
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Solr in practice

• It works!

• Master – slave – should be used only if the data 

modification isn’t to often

• Use binary protocol if possible

• Reindex clears cache unless configured otherwise

• Cache can’t be bigger then 2GB

• Integrating cache mechanics into Solr costs a lot
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Search() algorithm

1) Process the query

2) Send query to solr

3) Get list of object ids

4) Get objects from cassandra with multiget

5) Unserialize the data as Java object

6) Translate the data to a Thrift object

7) Return the object
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MogileFS – OMG files!
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• Distributed filesystem

• OpenSource

• Developed by Danga Interactive

• Designed for scalable web app storage

• Users:

What is MogileFS



Why use MogileFS

• Horizontal scalability

• Reliability (no Single Point Of Failure)

• No RAID required (better than RAID)

• Application level (no kernel modules)

• Library available for

• Perl, PHP, Python, Java, Ruby …
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MogileFS Components

• Client

• Tracker

• Handles communication (Application/Frontend<>Storage/DB)

• Multiple workers (processes)

• Storage

• Physical storage for files

• Any HTTP server (with WebDAV support)

• Your OS & FS

• Database

• Stores metadata, server settings, hosts & devices

• Your RDBMS
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All your files are belong to …

• Files are organized in a flat namespace

• Classes (replication policy)

• Domains (many applications)

• Replication according to file class policy

• Each class has its own minimal replica count

• You decide how safe your files should be
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Overview

3/15/2011 Product Catalogue - Case Study 31

Frontend
Tracker 1

Tracker 2

Storage 4Storage 3Storage 1 Storage 2

Database



Scaling & Performance

• Add more frontends / trackers / workers

• Add more storage nodes / devices

• Increase replicate count

• Add MySQL Slave replica for reads

• Replace Mogstored with Nginx

• Use Nginx as a frontend

• Cache tracker replies (memcached)
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SLA
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Reliability & HA

• MySQL Master<>Master replication (active/standby)

• Redundant storage nodes / trackers / frontends

• Haproxy for tracker and DB slave connections

• OpenSolaris & ZFS for storage nodes
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Multiple datacenters awarness

• MultipleNetworks plugin

• Directs requests from one IP class to storage nodes on the same 

address class

• As easy as

• MySQL Master<>Master replication between datacenters
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Usage examples
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• Adding a new storage node

• Adding a new device on a storage

• Changing replication policy for class1

• Adding a MySQL slave replica for doing reads



Now
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Client
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Future
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Thank you!

Q&A?
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Piotr Modzelewski

piotr.modzelewski@allegro.pl
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