
3/15/2011 Product Catalogue - Case Study 1



Product Catalogue – Case Study

3/15/2011 Product Catalogue - Case Study 2

Piotr Modzelewski Bartłomiej Rymarski



3/15/2011 Product Catalogue - Case Study 3

an overview of technologies helping to create a 

scalable and efficient service quickly

Cheating the project 

management triangle



Project management triangle with 

constant budget

3/15/2011 Product Catalogue - Case Study 4



3/15/2011 Product Catalogue - Case Study 5

Solution for the lazy



3/15/2011 Product Catalogue - Case Study 6

WTH?

– Binary protocols are fast

• Try to make fast server with XML! :)

– Managing binary protocols is hard

• Is it?

• Can it be easier?

– Web API should be language independent

• Binary in PHP?

• Little Endian vs. Big Endian



So why Thrift?

– Language support:

• C/C++/D, PHP, Java, Erlang, Perl, Python …

– Why to write it, if you can generate it?

– Stand alone server! 

• No tomcat BS.

– To good to be true?

3/15/2011 Product Catalogue - Case Study 7



Implementation Step 1 / 3 - Design

namespace java pl.allegro.example.server

typedef i64 Timestamp

service ExampleService {

Timestamp ping(),

}

3/15/2011 Product Catalogue - Case Study 8



Implementation Step 2 / 3 – Gen gen

thrift --gen java ping.thrift

3/15/2011 Product Catalogue - Case Study 9

<dependency>      

<groupId>slf4j-api</groupId>      

<artifactId>slf4j-api</artifactId>      

<version>1.5.10</version>    

</dependency>    

<dependency>      

<groupId>libthrift</groupId>      

<artifactId>libthrift</artifactId>      

<version>0.2.0</version>    

</dependency>



Implementation Step 3 / 3 – Coding

3/15/2011 Product Catalogue - Case Study 10



Deployment – Step 1/2
<plugin>        

<groupId>org.apache.maven.plugins</groupId>        

<artifactId>maven-shade-plugin</artifactId>        

<executions> 

<execution>            

<phase>package</phase>            

<goals> <goal>shade</goal> </goals>          

</execution>        

</executions>        

<configuration> <finalName>

${artifactId}-${version}-with-dependencies

</finalName></configuration>      

</plugin>

3/15/2011 Product Catalogue - Case Study 11



Deployment – Step 2/2

> mvn clean install

> java –jar PingService-1.0-with-dependencies

3/15/2011 Product Catalogue - Case Study 12



So how to solve our problem?
namespace java pl.allegro.example.server

typedef i64 Timestamp

struct ApiObject {    

1: i64 id,    

2: string name,    

3: string description,    

4: list<string> images,

}

struct ApiSearchResult {    

1: list<ApiObject> products,    

2: i64 totalHits

}

service PrototypeService {    

Timestamp ping(),

ApiObject getById (1: i64 id),

ApiSearchResult search (1: string query, 2: i32 page, 3: i32 limit),    

}

3/15/2011 Product Catalogue - Case Study 13



When DB is not enought.

Cassandra for example?

3/15/2011 Product Catalogue - Case Study 14



Why Db is not good for our cause?

• Db is heavy

• Downsides of transactions

• Select via index vs Memcached

• Db is unpredictable

• Heavy queries can lock tables

• Db maintenance queries can become heavy

3/15/2011 Product Catalogue - Case Study 15



NoSQL for the rescue!

3/15/2011 Product Catalogue - Case Study 16



Cassandra

• Thrift based Service

• Cluster of agents – Ring

• The data is stored on hard disk and memory (via cache)

• The data distribution is configured

• It can be requested to have data copied on each server or just on 

a part of them

• Many options of data storage

3/15/2011 Product Catalogue - Case Study 17



Cassandra in practice

• Keep same data on every node

• Deploy Cassandra near the API server – same machine is 

the best

• Keep the data in the scheme simple

• The bigger cache, the better

• Help Cassandra to keep things in cache

3/15/2011 Product Catalogue - Case Study 18



Example deployment

3/15/2011 Product Catalogue - Case Study 19

C-1-1 C-2-1

C-1-2 C-1-3 C-1-4 C-2-2 C-2-3 C-2-4

API-1-1 API-1-2 API-1-3 API-1-1 API-1-2 API-1-3



getById() algorithm

1. Get the byte[] data from the Cassandra by ID

2. If there is no data, throw an exception, that object is not 

found

3. Unserialize the data as Java object

4. If it isn’t Thrift class object, translate the data to a 

Thrift object

5. Return the object

3/15/2011 Product Catalogue - Case Study 20



Solr

Let sphinx be a relic

3/15/2011 Product Catalogue - Case Study 21



There was a Sphinx

- Popular and well known search engine

- Speed gained by very simple use only

- Really bad debug support

- Command line tools only

- No good build-in replication method

- Bad support for connection pooling

3/15/2011 Product Catalogue - Case Study 22



Solr

- Web based administration panel with statistics, options 

and query tool

- Extendable by hook-like plugins

- Many build in features

- Highlights

- Spellchecking

- Rich schema possibilities

3/15/2011 Product Catalogue - Case Study 23



Solr in practice

• It works!

• Master – slave – should be used only if the data 

modification isn’t to often

• Use binary protocol if possible

• Reindex clears cache unless configured otherwise

• Cache can’t be bigger then 2GB

• Integrating cache mechanics into Solr costs a lot

3/15/2011 Product Catalogue - Case Study 24



Search() algorithm

1) Process the query

2) Send query to solr

3) Get list of object ids

4) Get objects from cassandra with multiget

5) Unserialize the data as Java object

6) Translate the data to a Thrift object

7) Return the object

3/15/2011 Product Catalogue - Case Study 25



3/15/2011 Product Catalogue - Case Study 26

MogileFS – OMG files!



3/15/2011 Product Catalogue - Case Study 27

• Distributed filesystem

• OpenSource

• Developed by Danga Interactive

• Designed for scalable web app storage

• Users:

What is MogileFS



Why use MogileFS

• Horizontal scalability

• Reliability (no Single Point Of Failure)

• No RAID required (better than RAID)

• Application level (no kernel modules)

• Library available for

• Perl, PHP, Python, Java, Ruby …

3/15/2011 Product Catalogue - Case Study 28



MogileFS Components

• Client

• Tracker

• Handles communication (Application/Frontend<>Storage/DB)

• Multiple workers (processes)

• Storage

• Physical storage for files

• Any HTTP server (with WebDAV support)

• Your OS & FS

• Database

• Stores metadata, server settings, hosts & devices

• Your RDBMS

3/15/2011 Product Catalogue - Case Study 29



All your files are belong to …

• Files are organized in a flat namespace

• Classes (replication policy)

• Domains (many applications)

• Replication according to file class policy

• Each class has its own minimal replica count

• You decide how safe your files should be

3/15/2011 Product Catalogue - Case Study 30



Overview

3/15/2011 Product Catalogue - Case Study 31

Frontend
Tracker 1

Tracker 2

Storage 4Storage 3Storage 1 Storage 2

Database



Scaling & Performance

• Add more frontends / trackers / workers

• Add more storage nodes / devices

• Increase replicate count

• Add MySQL Slave replica for reads

• Replace Mogstored with Nginx

• Use Nginx as a frontend

• Cache tracker replies (memcached)

3/15/2011 Product Catalogue - Case Study 32



SLA

3/15/2011 Product Catalogue - Case Study 33



Reliability & HA

• MySQL Master<>Master replication (active/standby)

• Redundant storage nodes / trackers / frontends

• Haproxy for tracker and DB slave connections

• OpenSolaris & ZFS for storage nodes

3/15/2011 Product Catalogue - Case Study 34



Multiple datacenters awarness

• MultipleNetworks plugin

• Directs requests from one IP class to storage nodes on the same 

address class

• As easy as

• MySQL Master<>Master replication between datacenters

3/15/2011 Product Catalogue - Case Study 35



Usage examples

3/15/2011 Product Catalogue - Case Study 36

• Adding a new storage node

• Adding a new device on a storage

• Changing replication policy for class1

• Adding a MySQL slave replica for doing reads



Now

3/15/2011 Product Catalogue - Case Study 37

Client

Storage

Storage

Tracker

MySQL MasterMySQL Slave

Tracker

Frontend

Frontend

Storage

Storage

Tracker

MySQL Master MySQL Slave

Tracker

Frontend

Frontend

DC1 DC2



Future

3/15/2011 Product Catalogue - Case Study 38

Client

Tracker

MySQL 

Master
MySQL Slave

Tracker

FrontendFrontend Frontend

FrontendFrontend Frontend

Tracker

MemcachedMemcached Memcached

FrontendFrontend Frontend

StorageStorage Storage

StorageStorage Storage

StorageStorage Storage

MySQL Slave

Tracker

MySQL SlaveMySQL Slave

Tracker

FrontendFrontend Frontend

FrontendFrontend Frontend

Tracker

MemcachedMemcached Memcached

FrontendFrontend Frontend

StorageStorage Storage

StorageStorage Storage

StorageStorage Storage

MySQL 

Master



Thank you!

Q&A?

3/15/2011 Product Catalogue - Case Study 39

Piotr Modzelewski

piotr.modzelewski@allegro.pl

Bartłomiej Rymarski

bartlomiej.rymarski@allegro.pl


