Network protection against DoS/DDoS attacks

www.huawei.com

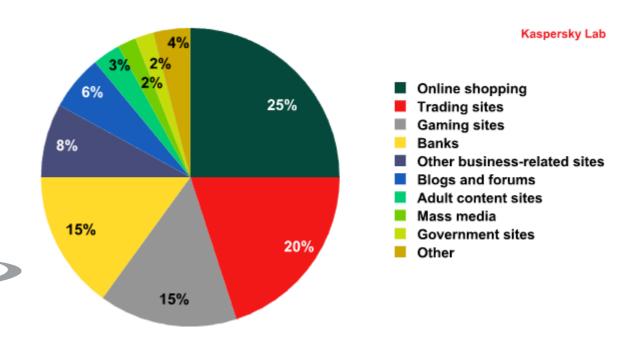
Pawel Wachelka IP Product Manager Huawei Enterprise Business Group, CEE & Nordic Region Email: <u>Pawel.Wachelka@huawei.com</u>

HUAWEI TECHNOLOGIES CO., LTD.



Contents

1	Threats of DDoS Attacks
2	Defense Principle
3	Huawei Anti-DDoS Solution
4	Products and Deployments



Expenses in capacity expansion

•Financial losses: \$30,000,000 in the IDC industry

Src: http://www.securelist.com

Evolving DDoS Attacks — Application-Layer Attacks, Rendering Conventional Flow Devices Ineffective

• June 2009

Many social networking Web sites were paralyzed by DDoS attacks and were unresponsive to legitimate users.

October 2010

The official Web site of Moneybooker was paralyzed by DDoS attacks for a whole morning.

January 2011

DDoS (application-layer attacks such as HTTP, TCP, and connection floods) attacks to Egypt.

January 2012 Various Polish Government Web sites were paralyzed by DDoS attacks.

Evolving DDoS Attacks — Larger Scale, 100+ Gbit/s

Russia

Ukraine

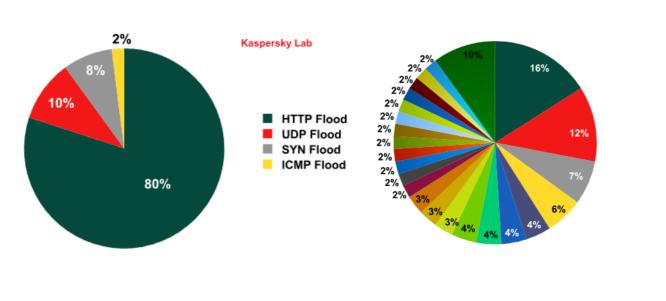
Thailand

Mexico Mexico

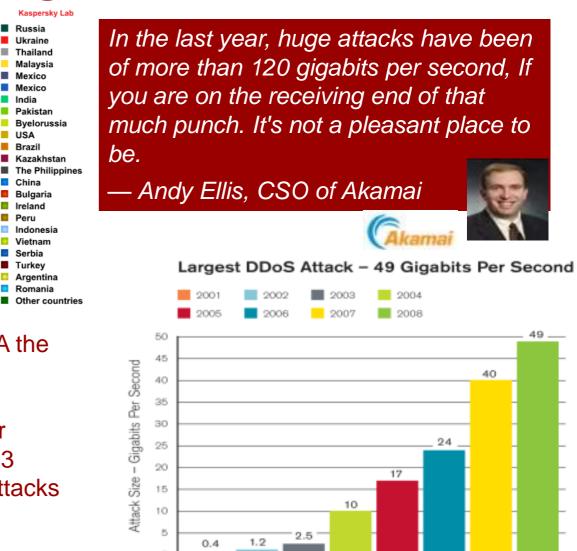
Pakistan

India

USA


Brazil

China


Bulgaria Ireland Peru Indonesia Vietnan Serbia Turkev

Argentina Romania

Malaysia

- Statistics about the attacks on the backbone network of Telco A the attack traffic on a single IP E1000E-D exceeds 10 Gbit/s.
- The longest attack recorded in the second half of the 2011 year targeted a travel company and lasted for 80 days, 19 hours, 13 minutes and 5 seconds, and the average duration of DDOS attacks was 9 hours and 29 minutes.

Contents

Defense Principle

Basic Defense Principle

Defense Principle of TCP Flood

Defense Principle of UDP Flood

Defense Principle of ICMP Flood

Defense Principle of DNS Flood

Defense Principle of TCP Connection Flood

Defense Principle of HTTPS Flood

Defense Principle of HTTP Flood

Anti-DDoS MSS

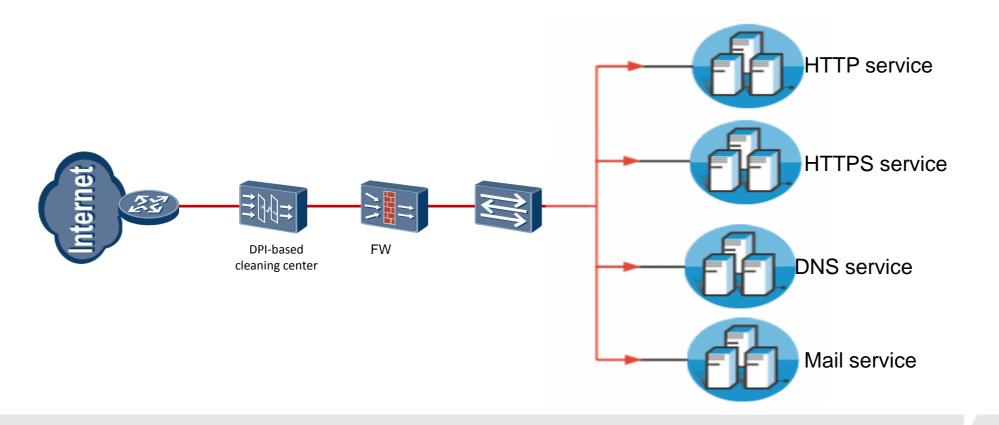
Conventional Security Devices Are Hopeless and Customers Need New Solutions

• Conventional firewalls can defend against common DDoS or DoS attacks, but will be the first victim in more complicated and severe DDoS attacks.

• IPS identifies and defends against intrusion behaviors based on the signature database; however, DDoS or DoS attacks are launched through legitimate data packets, which do not meet the behavior features of intrusion.

- Based on NetFlow traffic sampling and analysis, conventional anti-DDoS or anti-DoS devices can defend against common flood attacks but cannot cope with light traffic and application-layer attacks. Moreover, conventional anti-DDoS or anti-DoS devices are slow in detecting and traffic diversion.
- Conventional anti-DDoS devices cannot cope with evolving DDoS attacks and cannot meet the requirements of customers.

Defending Against DDoS Attacks on the Upstream Network

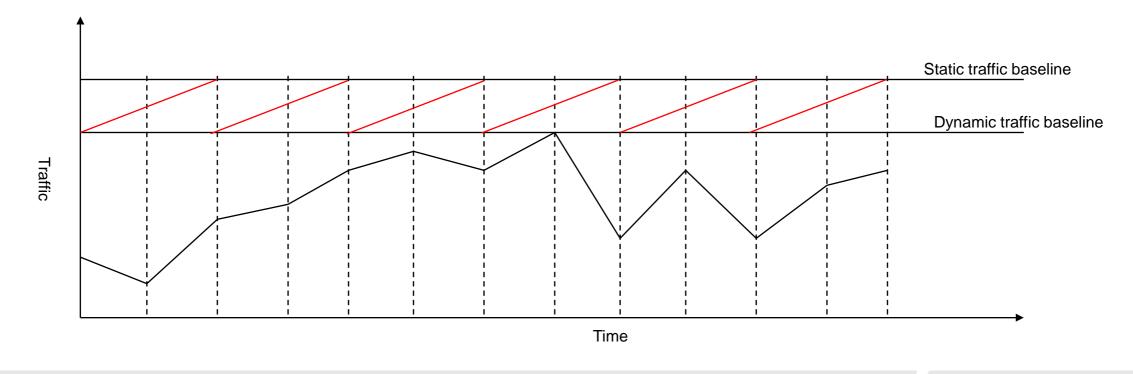

Huawei anti-DDoS solution should relieve the congestion of carriers' networks first. It cleans the heavy traffic of bandwidth flood attacks .

Refined Defense for VIPs' Services — Defense at the Egress of the Downstream Network

The dedicated cleaning device is deployed at the egress of the access network to deliver refined defense for application servers. It mainly targets at application layer attacks and light traffic attacks.

Defense Filters

1. Defends against 19% attack traffic after source authentication is performed.


2. Uses the IP address of the protected network as the attack source, resulting in reflection packet leak.

First Filter		Second Filter		Third Filter
Defense based on Interface	Defense based on services	Defense based on destination IP	Defense based on destination IP range	Defense based on source IP
syn flood syn-ack flood ack flood fin flood rst flood tcp fragment flood tcp abnormal flood http flood dns request flood dns reply flood lcmp flood	syn flood syn-ack flood ack flood fin flood rst flood IP fragment flood tcp abnormal flood http flood CC https flood dns request flood dns reply flood DNS Amplification Attacks DNS cache poisoning attack http hijacking udp flood Icmp flood SSL-DoS SSL-DDoS	syn flood syn-ack flood ack flood fin flood rst flood IP fragment flood tcp abnormal flood http flood CC https flood dns request flood dns reply flood DNS Amplification Attacks DNS cache-poisoning attack http hijacking udp flood Icmp flood SSL-DoS SSL-DDoS	syn flood syn-ack flood ack flood fin flood rst flood tcp fragment flood dns request flood dns reply flood	syn flood syn-ack flood ack flood fin flood rst flood tcp fragment flood tcp abnormal flood DNS flood

Detecting Technology: Dynamic Traffic Baseline

Currently, most anti-DDoS systems employ the single-traffic threshold for identifying attacks. The threshold should be manually configured by users according to the actual traffic on the live network. However, users experience trouble in configuring such a threshold. Under this scenario, Huawei DPI system offers the dynamic traffic baseline, through which learnt dynamic thresholds replace static ones. In so doing, detecting accuracy is improved.

Defense Principle

Basic Defense Principle

Defense Principle of TCP Flood

Defense Principle of UDP Flood

Defense Principle of ICMP Flood

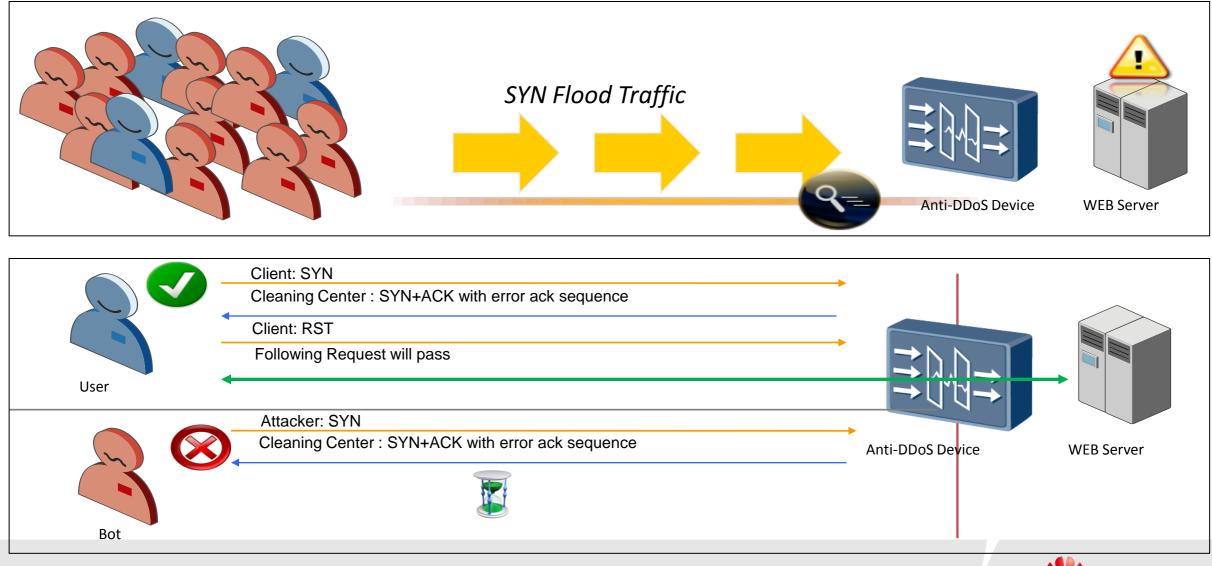
Defense Principle of DNS Flood

Defense Principle of TCP Connection Flood

Defense Principle of HTTPS Flood

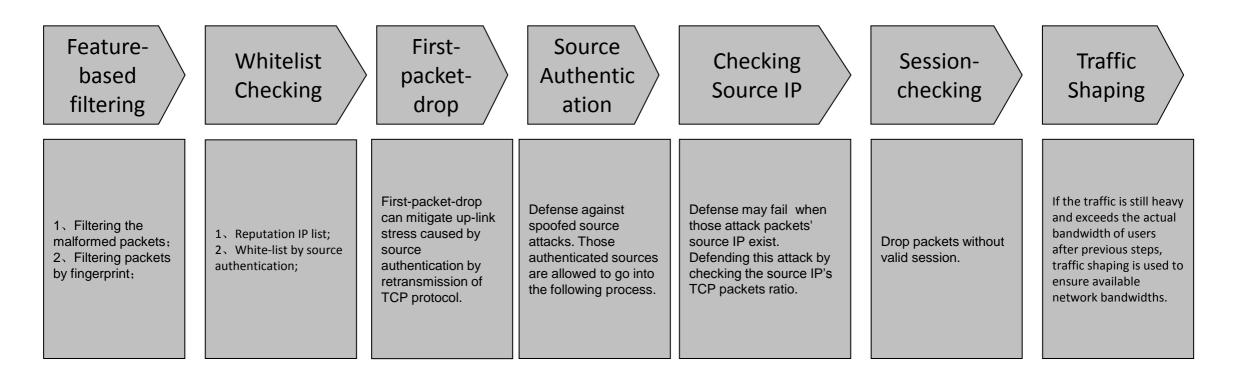
Defense Principle of HTTP Flood

Anti-DDoS MSS


Spoofed Source Attacks: SYN Flood

	Source Address	Dest Address	Summary	L
	100.106.126.97	210.14.67.1	TCP: 38228 > pptp [SVN] Seq=0 Ack=0 Win=65230 Len=0 MSS=1460	62
	100.15.82.107	210.14.67.1	TCP: 31332 > pptp [SVN] Seq=0 Ack=0 Win=62013 Len=0 MSS=1460	62
	100.2.117.79	210.14.67.1	TCP: $4155 \ge pptp$ [SVN] Seq=0 Ack=0 Win=62678 Len=0 MSS=1460	62
	100.30.227.6	210.14.67.1	TCP: 21056 > pptp [SVN] Seq=0 Ack=0 Win=62535 Len=0 MSS=1460	62
	100.57.126.104	210.14.67.1	TCP: 16467 > pptp [SVN] Seq=0 Ack=0 Win=62662 Len=0 MSS=1460	62
Attack Charactery	100.74.176.89	210.14.67.1	TCP: 7945 > pptp [SVN] Seq=0 Ack=0 Win=62960 Len=0 MSS=1460	62
Attack Character:	101.114.88.6	210.14.67.1	TCP: $61545 > pptp$ [SVN] Seq=0 Ack=0 Win= 63405 Len=0 MSS= 1460	62
1. Spoofed source attack;	101.18.247.71	210.14.67.1	TCP: 64858 > pptp [SVN] Seq=0 Ack=0 Win=62116 Len=0 MSS=1460	62
2. Defense can fail when those	101.24.162.66	210.14.67.1	TCP: 55568 > pptp [SYN] Seq=0 Ack=0 Win=63422 Len=0 MSS=1460	62
	101.26.146.19	210.14.67.1	TCP: 11367 > pptp [SYN] Seq=0 Ack=0 Win=63984 Len=0 MSS=1460	62
attack packets' source IP exist;	101.52.177.30	210.14.67.1	TCP: 44103 > pptp [SVN] Seq=0 Ack=0 Win=61534 Len=0 MSS=1460	62
3. The discontinuous attack can	101.52.179.72	210.14.67.1	TCP: 47184 > pptp [SVN] Seq=0 Ack=0 Win=62635 Len=0 MSS=1460	62
	101.89.8.70	210.14.67.1	TCP: $53088 > pptp$ [SVN] Seq=0 Ack=0 Win= 63067 Len=0 MSS=1460	62
evade the detecting.	102.10.55.116	210.14.67.1	TCP: $62567 > pptp$ [SVN] Seq=0 Ack=0 Win= 62174 Len=0 MSS=1460	62

Defense Principle: First-packet-drop can defend and report spoofing_packets log.


Defense against SYN Flood based on Application Layer-based Source Authentication

HUAWEI TECHNOLOGIES CO., LTD.

Principle of Defense against TCP Flood

1. Spoofed source attack packets must been dropped before building session;

2. Reputation is used to avoid affection from defense.

Defense Principle

Basic Defense Principle

Defense Principle of TCP Flood

Defense Principle of UDP Flood

Defense Principle of ICMP Flood

Defense Principle of DNS Flood

Defense Principle of TCP Connection Flood

Defense Principle of HTTPS Flood

Defense Principle of HTTP Flood

Anti-DDoS MSS

Spoofed Source Attacks: UDP Flood without fingerprint

Source Address Dest Address Summary	Length		
211.98.131.156 117.79.86.42 UDP: Source port: 12226 Destination port: 21	142		
218.66.37.214 117.79.86.42 UDP: Source port: 14645 Destination port: 22	142		. Changetan
59.39.41.10 117.79.86.42 UDP: Source port: 20052 Destination port: 22	142		< Character:
222.83.177.137 117.79.86.42 UDP: Source port: 3567 Destination port: 23	142		e source IP address a
202.120.49.130 117.79.86.42 UDP: Source port: 62236 Destination port: 21	142	2. The	e packet payload chai
211.225.92.177 117.79.86.42 UDP: Source port: 3548 Destination port: 23	142	3. The	e packet length also c
122.156.208.72 117.79.86.42 UDP: Source port: 1712 Destination port: 23	142	:55	Summary
219.150.132.108 117.79.86.42 UDP: Source port: 3765 Destination port: 22	142	42	UDP: Source port
221.195.82.69 117.79.86.42 UDP: Source port: 2401 Destination port: 23	142	42	UDP: Source port
61.174.171.118 117.79.86.42 UDP: Source port: 3337 Destination port: 23	142	42	UDP: Source port
221.226.4.98 117.79.86.42 UDP: Source port: 1952 Destination port: 21	142	42	UDP: Source port
0000: 01 02 03 04 05 06 07 08 09 0A 0B 0C 08 00 45 00	2	42	UDP: Source port
0010: 00 80 51 BA 00 00 71 11 D5 3A D3 62 83 9C 75 4FQq:.buC	2	42	UDP: Source port
0020: 56 2A 2F C2 00 15 00 6C B9 10 7D 03 53 6A 00 5D	1 2.00	.42	UDP: Source port
0030: 5D 49 31 20 4B 18 3B 5F 36 1C 1F 27 48 66 78 32]I1 K.;_6'Hfx2	79.86	.42	UDP: Source port
0040: 22 28 03 5D 7C 48 5E 5C 0B 33 10 2D 28 74 4A 4A "(.] H^\.3(tJ] 0050: 2E 05 6D 23 24 64 4B 4B 1C 6A 32 72 5A 59 27 13m#\$dKK.j2rZY'.	70.04	.42	UDP: Source port
0060: 39 34 6F 6E 4B 53 54 39 40 36 25 13 09 1A 7F 39 940nKST9@6%9		.42	UDP: Source port
0070: 3D 4A 4B 7C 3B 38 08 73 11 4C 4B 6D 1C 7C 03 29 =JK ;8.5.LKm. .)		.42	UDP: Source port
0080: 71 1D 02 4A 7C 78 39 05 67 21 43 1D 3D 04 q]×9.g!C.=.	79.86		UDP: Source port
0000: 01 0			07 08 09 0A 0B
0010: 00 8	0 8C 3D	00 00	76 11 EC 9D DA
	A 39 35	00 16	00 6C 87 E7 44
			29 24 00 33 35
			08 09 49 6B 4F
			60 54 72 55 65 71 41 44 15 07
			3E 4E 46 12 05
			06 38 43 6E 72

2. If attacks are upon service ports, TCP authentication must be performed over UDP data transmission such as online games. In this case, TCP association can be used to defend against UDP flood attacks. The device displays "Spoofing_packets" for packet loss.

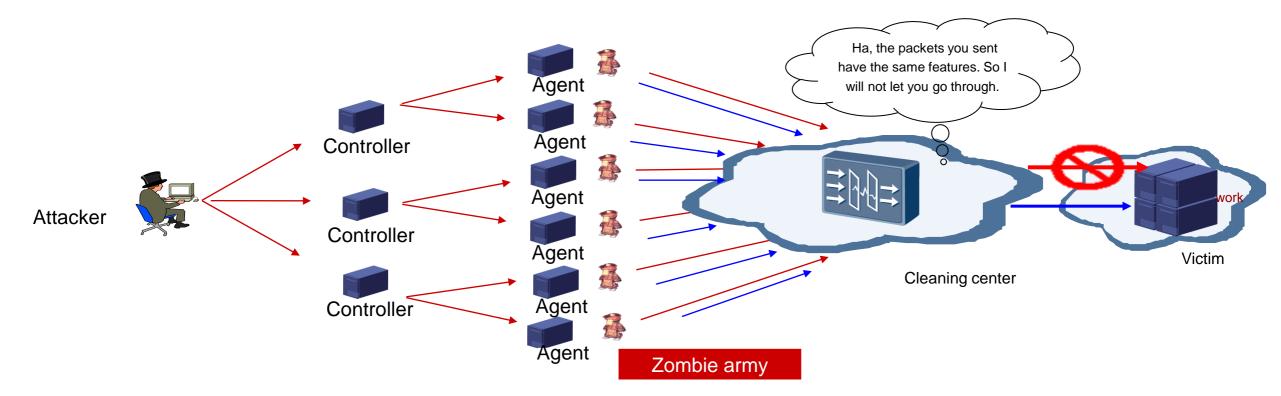
3. If traffic limiting is applied, the device displays "Overflow_packets" for packet loss.

and source port change.

nanges.

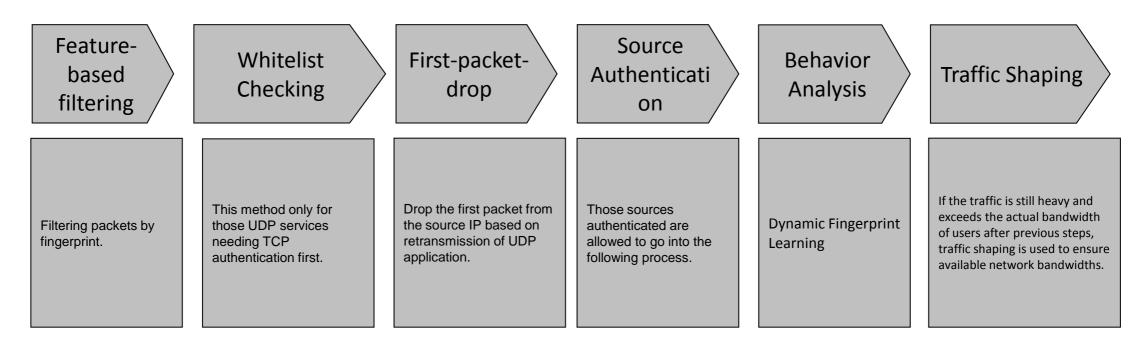
changes.

				-													-		
3	142	:55		S	umm	nary												Ler	ngth
2	142	42		U	DP:	Sou	rce	port:	12	226	De	stin	atio	n poi	ti 2	1		143	2
з	142	42		U	DP:	Sou	rce	port:	14	645	j De	stin	atio	n poi	rt: 2	2		14:	2
3	142	42		U	DP:	Sou	rce	port:	20	052	De	stin	atio	n poi	rt: 2	2		14:	2
1	142	42		U	DP:	Sou	rce	port:	35	67	Des	tina	tion	port	23			143	2
E.	2	42		U	DP:	Sou	rce	port:	62	236	De	stin	atio	n poi	t: 2	1		14:	2
:.buc) 2	42		U	DP:	Sou	rce	port:	35	48	Des	tina	tion	port	: 23			14:	2
.}.sj.]	r 2.0	86.42		U	DP:	Sou	rce	port:	17	12	Des	tina	tion	port	23			14:	2
5'Hfx2	79.9	86.42		U	DP:	Sou	rce	port:	37	65	Des	tina	tion	port	22			14:	2
3(t): j2rZY'.	70.4	86.42		U	DP:	Sou	rce	port:	24	01	Des	tina	tion	port	23			14:	2
46%9		86.42		U	DP:	Sou	rce	port:	33	37	Des	tina	tion	port	23			14:	2
LKm. [.]	79.8	86.42		U	DP:	Sou	rce	port:	19	52	Des	tina	tion	port	21			143	2
,!⊂.=.	79.8	86.42		U	DP:	Sou	rce	port:	45	65	Des	tina	tion	port	24			143	2
01 0	2 03	04 05	06	07	08	09	ОA	OB	0C	08	00	45	00						E.
00 8	0 80 3	3D OO	00	76	11	EC	9D	DA	42	25	D6	75	4F			=	v	E	3% . u0
562	A 39 0	35 00	16	00	6C	87	E7	44	7 D	34	19	3 E	02		V*9	5	.1.	D)	}4.>.
10 0	7 20 3	50 21	23	29	24	00	33	35	12	43	04	35	77		,	P!#)\$.	.35.	. <. 5%
21 0	1 3B 🔅	30 57	03	08	09	49	6В	4F	78	6D	6F	ЗC	0C		۱.;	ow.]	EkO>	<mo<.< td=""></mo<.<>
65 3	1 35 3	20 6B	16	60	54	72	55	65	3 E	0A	4E	75	5C		e15	k.	TΓ	°Ue>	• . Nu'
05 1	Е ОВ 🗸	4D 58	70	71	41	44	15	07	2 F	35	58	40	46			м×р	qAt	o/	∕5×@₽
6A 0	B 6D 🕻	25 56	66	3 E	4E	46	12	05	58	45	00	3 E	65		j.m	BWT:	> N F	=>	<e.>0</e.>
3⊂ 7	F 4D 3	54 5E	0E	06	38	43	6E	72	08	53	7C				<.M	ITA.	. 80	Inr.	s.



Spoofed Source Attacks: UDP Flood with fingerprint

Source Address	Dest Address	Summary		Length		
124.128.63.242	119.63.36.11	UDP: Source port: 51160 Dest	ination port: 9801	569		
59.56.250.88	119.63.36.11	UDP: Source port: 10289 Dest	ination port: 9801	711	Attack Character:	
110.230.30.16	119.63.36.11	UDP: Source port: 9366 Destir	nation port: 9801	1046	1. The source IP address and source port change.	
61.182.49.114	119.63.36.11	UDP: Source port: 3458 Destir	nation port: 9801	1242	2. The packet length also changes.	
113.162.97.102	119.63.36.11	UDP: Source port: 2723 Destir	nation port: 9801	1067	3. Packet payloads can be either the same such as Aladdin attacks or differe	ent in
112.162.164.163	119.63.36.11	UDP: Source port: 4296 Destir	nation port: 9801	1257	the case that payload bytes for the same packet are identical.	
88.231.26.152	119.63.36.11	UDP: Source port: 11105 Dest	tination port: 9801	1106		
113.240.232.6	119.63.36.11	UDP: Source port: 2218 Destin	nation port: 9801	353	s Summary	Length
121.33.201.17	119.63.36.11	UDP: Source port: 2840 Destir		504	1 UDP: Source port: 51160 Destination port: 9801	569
24 OB C7 D8 26 49		30 30 30 30 30 \$&I.	000000 88	119.63.36.1	1 UDP: Source port: 10289 Destination port: 9801	711
30 30 30 30 30 30			000000000000000000000000000000000000000	119.63.36.1	1 UDP: Source port: 9366 Destination port: 9801	1046
30 30 30 30 30 30 30 30 30 30 30 30			000000000000000000000000000000000000000	119.63.36.1	UDP: Source port: 3458 Destination port: 9801	1242
30 30 30 30 30 30 30			000000000 7.102	119.63.36.1	UDP: Source port: 2723 Destination port: 9801	1067
30 30 30 30 30 30	0 30 30 30 30 30	30 30 30 30 30 🗾 0000000	000000000 <mark>64.163</mark>	119.63.36.1	1 UDP: Source port: 4296 Destination port: 9801	1257
30 30 30 30 30 30			0000000000.152	119.63.36.1	UDP: Source port: 11105 Destination port: 9801	1106
30 30 30 30 30 30			000000000032.6	119.63.36.1	1 UDP: Source port: 2218 Destination port: 9801	353
30 30 30 30 30 30 30 30 30 30 30 30			00000000001.17	119.63.36.1	1 UDP: Source port: 2840 Destination port: 9801	504
30 30 30 30 30 30			000000000,79	119.63.36.1	1 UDP: Source port: 12298 Destination port: 9801	1003
			125.83.242.212	119.63.36.1	1 UDP: Source port: 3351 Destination port: 9801	977
			61.167.105.146	119.63.36.1		513
)5 06 07 08 09 0A 0B 0⊂ 08 00 45 68)0 00 75 11 38 9B 3B 38 FA 58 77 3F 9Vu.8	
Defense Dring	aiala				26 49 02 A5 40 71 BE BE BE BE BE BE BE \$.(1&I	
Defense Princ		mentio fingenerist learning. In this append			BE	
	n be filtered out through dy ays "Dynamic_filter" for pa	namic fingerprint learning. In this case,	0040: BE	BE BE BE B	3E BE	
		lomly, you can use refined packet filtering			ЗЕ ВЕ	
		feature of each attack. In this case, the	0060: BE			
	"User_defined_filter" for p				3E BE	
					BE B	



Defense against UDP Flood with Fingerprints based on Dynamic Fingerprint Learning

Principle of Defense against UDP Flood

- 1. UDP-based data transmission must pass TCP authentication. Therefore, TCP association is recommeded for defending against UDP flood attacks.
- 2. On the live network, UDP flood attacks are mainly at four layers, because key UDP data is transmitted in encryption mode. Therefore, adding refined packetfiltering rules meets the requirements on UDP flood cleaning, except for manual intervention upon attacks. The change of each attack packet brings challenges. To resolve such a problem, use packet features as filtering ones and set the action to whilisting the source IP address if matched.
- 3. Many attacks bear features on the live netowrk. In this case, static filtering or dynamic fingerprint learning is recommended.

Defense Principle

Basic Defense Principle

Defense Principle of TCP Flood

Defense Principle of UDP Flood

Defense Principle of ICMP Flood

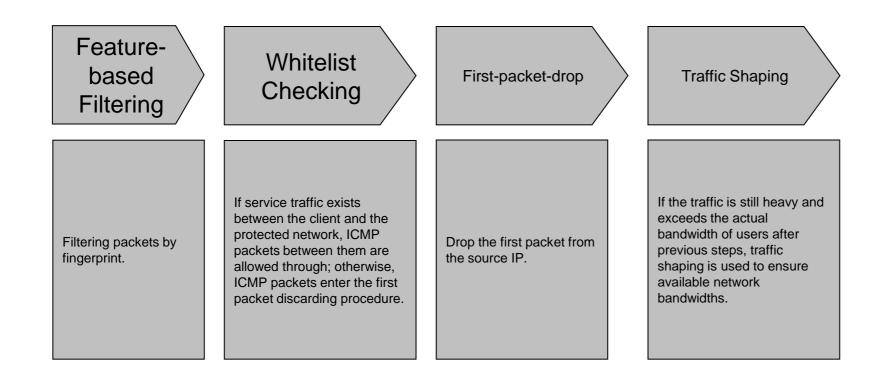
Defense Principle of DNS Flood

Defense Principle of TCP Connection Flood

Defense Principle of HTTPS Flood

Defense Principle of HTTP Flood

Anti-DDoS MSS


Spoofed Source Attacks: ICMP Flood

Source Address	Dest Address	Summary	Source Address	Dest Address	Summary
Source Address	Dest Address	Summary	10.10.5.30	210.14.70.113	ICMP: Time-to-live exceeded
10.0.1.253	210.14.70.113	ICMP: Time-to-live exceeded	218.27.16.206	210.14.70.113	ICMP: Destination unreachable
220,249,160,149	210.14.70.113	ICMP: Time-to-live exceeded	218.104.181.134	210.14.70.113	ICMP: Time-to-live exceeded
202.195.41.105	210.14.70.113	ICMP: Time-to-live exceeded	124.65.60.245	210.14.70.113	ICMP: Time-to-live exceeded
211.99.58.18	210.14.70.113	ICMP: Time-to-live exceeded	218.9.46.37	210.14.70.113	ICMP: Time-to-live exceeded
124.65.231.18	210.14.70.113	ICMP: Time-to-live exceeded	202.106.2.158	210.14.70.113	ICMP: Time-to-live exceeded
61.240.179.242	210.14.70.113	ICMP: Time-to-live exceeded	218.74.120.41	210.14.70.113	ICMP: Time-to-live exceeded
59.44.124.130	210.14.70.113	ICMP: Time-to-live exceeded	202.112.6.69	210.14.70.113	ICMP: Time-to-live exceeded
210.83.64.5	210.14.70.113	ICMP: Time-to-live exceeded	124.127.133.30	210.14.70.113	ICMP: Time-to-live exceeded
192.168.163.2	210.14.70.113	ICMP: Time-to-live exceeded	218.87.121.1	210.14.70.113	ICMP: Time-to-live exceeded
221.192.24.45	210.14.70.113	ICMP: Time-to-live exceeded	218.104.201.174	210.14.70.113	ICMP: Time-to-live exceeded
210.53.112.6	210.14.70.113	ICMP: Time-to-live exceeded	59.50.113.33	210.14.70.113	ICMP: Time-to-live exceeded
61.49.39.49	210.14.70.113	ICMP: Time-to-live exceeded	210.38.0.89	210.14.70.113	ICMP: Time-to-live exceeded
218.104.200.81	210.14.70.113	ICMP: Time-to-live exceeded	120.80.237.18	210.14.70.113	ICMP: Redirect
221.4.212.5	210.14.70.113	ICMP: Time-to-live exceeded	221.6.142.1	210.14.70.113	ICMP: Time-to-live exceeded
61.159.176.249	210.14.70.113	ICMP: Time-to-live exceeded	202.112.15.34	210.14.70.113	ICMP: Time-to-live exceeded
219.141.134.14	210.14.70.113	ICMP: Time-to-live exceeded	61.130.159.216	210.14.70.113	ICMP: Time-to-live exceeded
117.39.11.2	210.14.70.113	ICMP: Time-to-live exceeded	202.121.47.2	210.14.70.113	ICMP: Time-to-live exceeded
211.154.208.181	210.14.70.113	ICMP: Time-to-live exceeded	222.62.201.226	210.14.70.113	ICMP: Time-to-live exceeded
210.45.231.178	210.14.70.113	ICMP: Time-to-live exceeded	60.2.226.25	210.14.70.113	ICMP: Destination unreachable
202.112.6.69	210.14.70.113	ICMP: Time-to-live exceeded	58.30.14.104	210.14.70.113	ICMP: Destination unreachable

Attack Character: Spoofing source attack.

Defense Principle: First-packet-drop can defend and report spoofing_packets log.

Principle of Defense against ICMP Flood

Defense Principle

Basic Defense Principle

Defense Principle of TCP Flood

Defense Principle of UDP Flood

Defense Principle of ICMP Flood

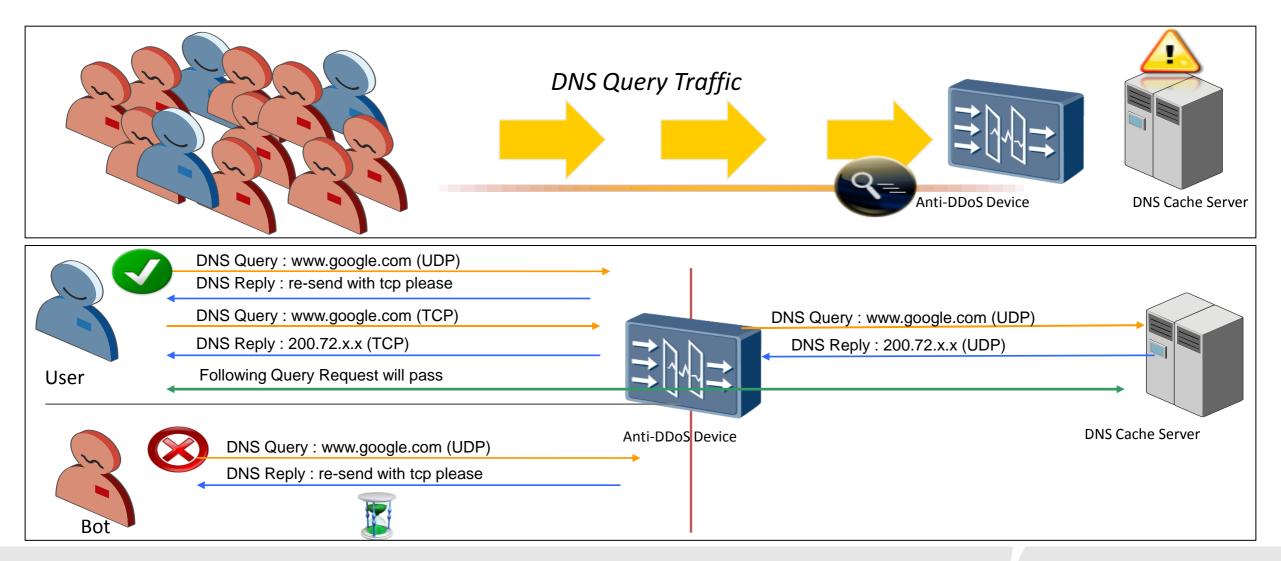
Defense Principle of DNS Flood

Defense Principle of TCP Connection Flood

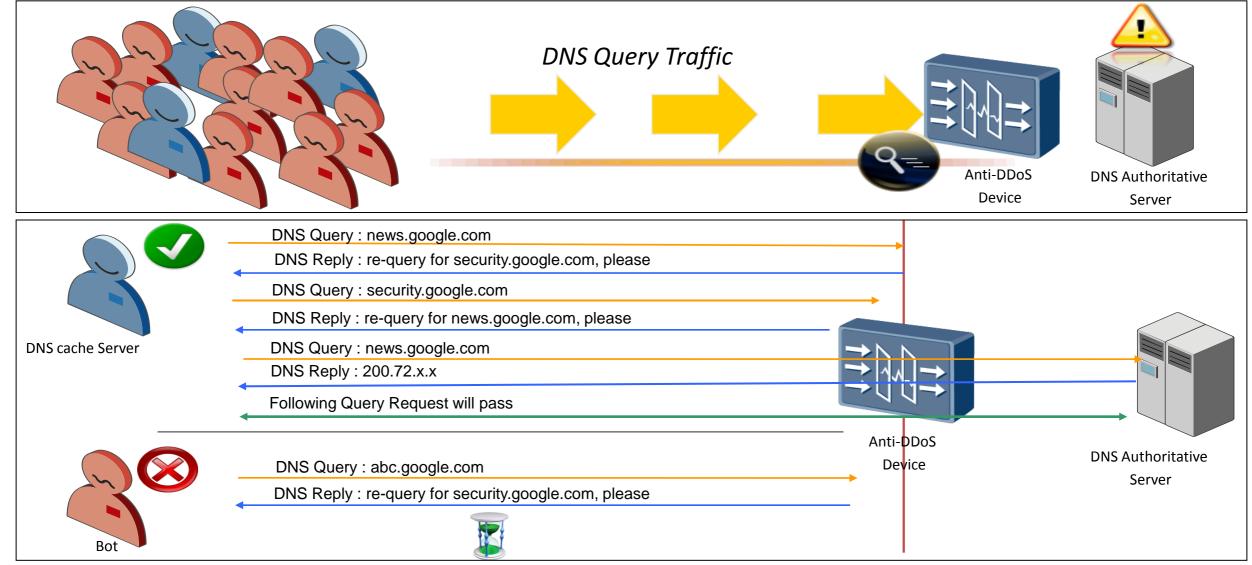
Defense Principle of HTTPS Flood

Defense Principle of HTTP Flood

Anti-DDoS MSS



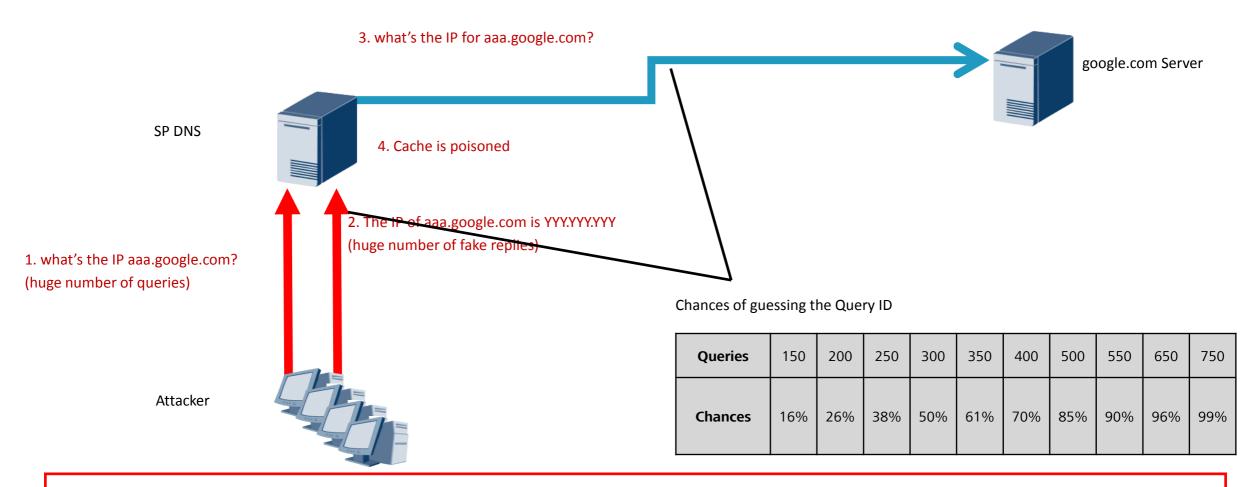
DNS Query and Reply Flood Attacks



Defense against DNS Query Flood for DNS Cache Server based on Application Layer-based Source Authentication

Defense against DNS Query Flood for DNS Authoritative Server based on Application Layer-based Source Authentication

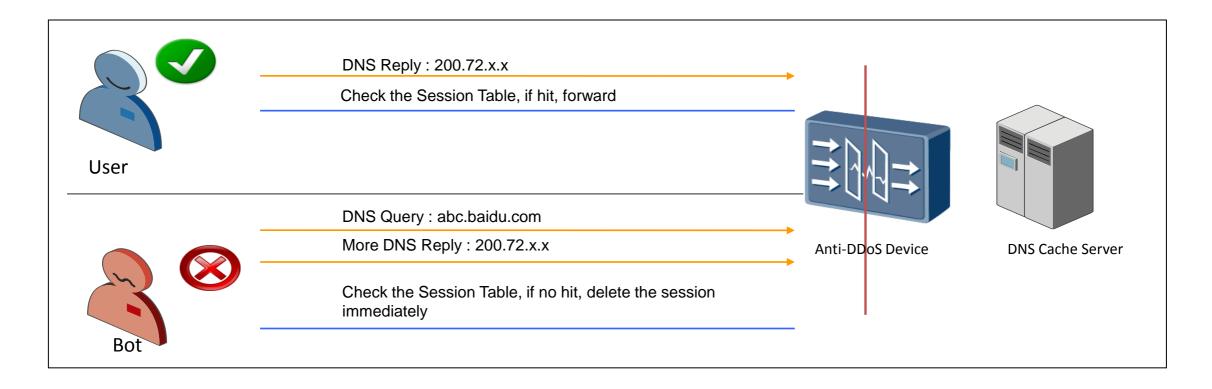
Malformed DNS Domain Attack


No. 🗸	Time	Source	Destination	lengthrotocol Info	_
	10	124.114.153.221	218.30.19.40		
	2 0	61.185.87.77	218.30.19.40	80 DNS Standard query A ogcscy28m4.dtyw1.com	
	30	113.140.72.22	218.30.19.40		
	4 0	61.185.87.77	218.30.19.40		
	50	61.185.87.77	218.30.19.40		
	60	61.185.87.77	218.30.19.40		
	7 0	61.185.87.77	218.30.19.40		
	80	124.114.153.221	218.30.19.40		
	90	61.185.87.77	218.30.19.40		
	10 0	61.185.87.77	218.30.19.40		
	11 0	61.185.87.77	218.30.19.40		
	12 0	124.114.153.221			
	13 0	113.140.72.22	218.30.19.40		
	14 0	124.114.153.221	218.30.19.40		
	15 0	61.185.87.77	218.30.19.40		
	16 0		218.30.19.40	80 DNS Standard query A AB7Ii5a7Bc.dtywl.com	
	17 0	61.185.87.77	218.30.19.40	81 DNS Standard query A q1x1s3k4nge.dtywl.com	

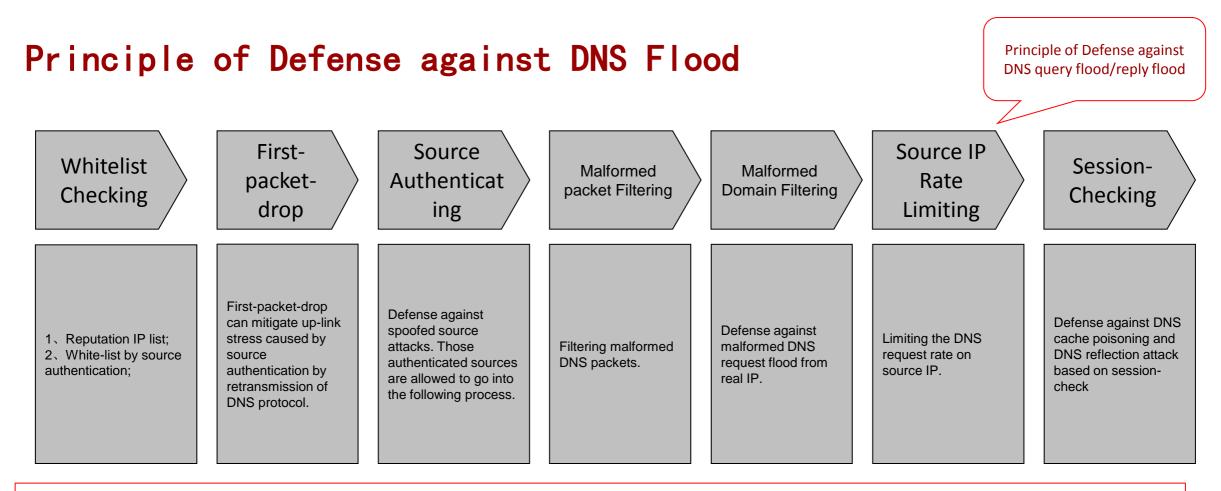
Attack Character: Uses the forged source or real IP address on the live network as the source IP address to send massive requests for non-existent domain names. This leads to the server's continuous sending of DNS requests and exerts severe impacts.

Defense Principle: uses rate limiting based on domain name matching to filter out attacks. The device displays "User_defined_filter" for packet loss.

DNS Cache Poisoning — Malformed_connections



Attack Character: uses the DNS session to send massive spoofed packets to match the session at possibilities within the short period. DNS cache poisoning attacks are forged source ones. This mode avoids the weakness of TCP three-way handshake.



Defense against DNS Cache Poisoning based on Session-check

Spoofed source attack packets must been dropped before building session;
 Reputation is used to avoid affection from defense.

Defense Principle

Basic Defense Principle

Defense Principle of TCP Flood

Defense Principle of UDP Flood

Defense Principle of ICMP Flood

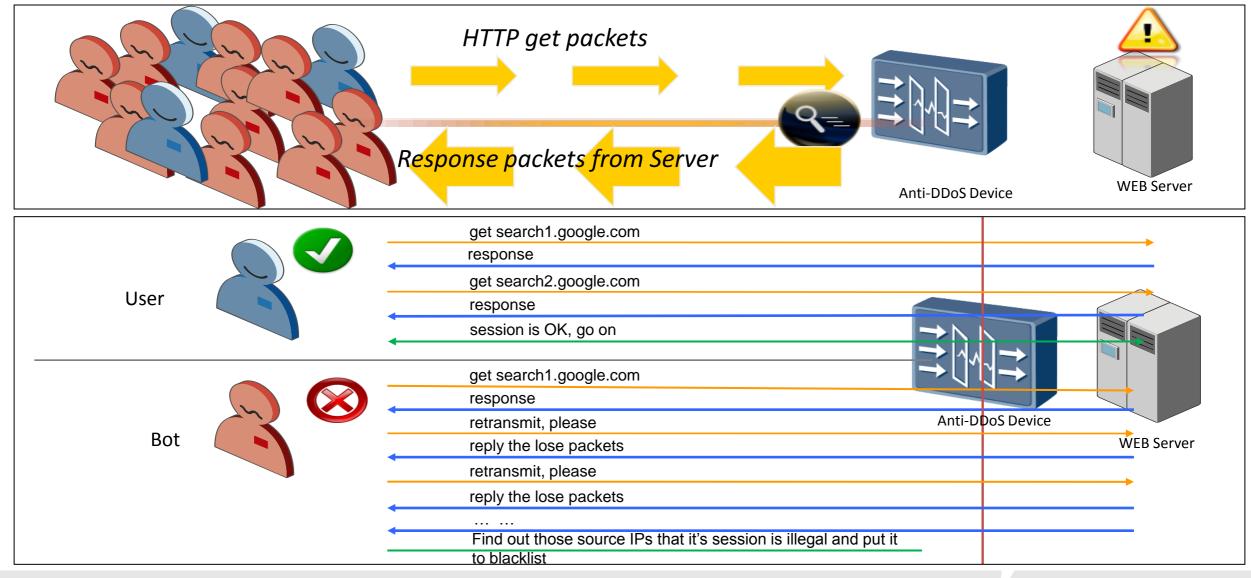
Defense Principle of DNS Flood

Defense Principle of TCP Connection Flood

Defense Principle of HTTPS Flood

Defense Principle of HTTP Flood

Anti-DDoS MSS



TCP Retransmission Attack—Client_attacks

i 1 Source	Destination	Protocol	Info	request
1 4 222.240.187.37	118.250.201.68	HTTP	Continuation or non-HTTP traffic	7
5 4 118.250.201.68	222.240.187.37	TCP	TCP Dup ACK 92#1 4859 > http ACK Seg=168 Ack=26639 win=4	
5 4 222.240.187.37	118.250.201.68	HTTP	[TCP Retransmission] Continuation or non-HTTP traffic	
7 4 222.240.187.37	118.250.201.68	HTTP	[TCP Retransmission] Continuation or non-HTTP traffic	
3 4 222.240.187.37	118.250.201.68	HTTP	[TCP Retransmission] Continuation or non-HTTP traffic 🥂 🦯	
9 4 118.250.201.68	222.240.187.37	TCP	[TCP Dup ACK 92#2] 4859 > http [ACK] Seq=168 Ack=26639 Win=4	Retransmission
) 4 118.250.201.68	222.240.187.37	TCP	[TCP Dup ACK 92#3] 4859 > http [ACK] Seq=168 Ack=26639 Win=4	
L 4 118.250.201.68	222.240.187.37	TCP	TCP Dup ACK 92#4] 4859 > http [ACK] seq=168 Ack=26639 win=4	Packets
2 5 118.250.201.68	222.240.187.37	TCP		
3 5 222.240.187.37	118.250.201.68	HTTP	[TCP Retransmission] Continuation or non-HTTP traffic	
1 5 222.240.187.37	118.250.201.68	HTTP	[TCP Previous segment lost] Continuation or non-HTTP traffic	
5 5 118.250.201.68	222.240.187.37	TCP	[TCP Dup ACK 92#6] 4859 > http [ACK] Seq=168 Ack=26639 Win=4	
5 5 118.250.201.68	222.240.187.37	TCP	[TCP Dup ACK 92#7] 4859 > http [ACK] Seq=168 Ack=26639 Win=4	
7 € 222.240.187.37	118.250.201.68	HTTP	[TCP Retransmission] Continuation or non-HTTP traffic	
3 € 118.250.201.68	222.240.187.37	TCP	4859 > http [ACK] seq=168 Ack=28041 win=46537 Len=0 TSV=9491	
€ 222.240.187.37	118.250.201.68	HTTP	[TCP Retransmission] Continuation or non-HTTP traffic	
Destination port Sequence number:	:168 (relative s			
Acknowledgement		relative	ack number)	
Acknowledgement Header length: 4	44 bytes	relative	-	
Acknowledgement Header length: 4 I Flags: 0x0010 (A	44 bytes ACK)	relative	Attack Character:	
Acknowledgement mi- Header length: 4 Flags: 0x0010 (A window size: 465	44 bytes ACK) 537	relative	Attack Character:	number of otto -1
Acknowledgement Header length: 4 Flags: 0x0010 (A window size: 465 Checksum: 0xd947	44 bytes ACK) 537 7 [correct]	relative	Attack Character: 1、 Real source of attack, attack the client and server to establish a connection, a limited	
Acknowledgement Header length: 4 Flags: 0x0010 (A window size: 469 Checksum: 0xd947 ∋ options: (24 byt	44 bytes ACK) 537 7 [correct]	relative	Attack Character: 1、 Real source of attack, attack the client and server to establish a connection, a limited	
Acknowledgement Header length: 4 Flags: 0x0010 (A window size: 465 Checksum: 0xd947 Doptions: (24 byt NOP	44 bytes ACK) 537 7 [correct]	elative	Attack Character: 1. Real source of attack, attack the client and server to establish a connection, a limited the client to send fewer messages, and as far as possible to hide the attack side; this is a c	
Acknowledgement Header length: 4 Flags: 0x0010 (A window size: 465 Checksum: 0xd947 Options: (24 byt NOP	44 bytes ACK) 537 7 [correct] tes)		Attack Character: 1 Real source of attack, attack the client and server to establish a connection, a limited the client to send fewer messages, and as far as possible to hide the attack side; this is a c Client_attacks;	common feature o
Acknowledgement Header length: 4 Flags: 0x0010 (A window size: 465 Checksum: 0xd947 Options: (24 byt NOP	44 bytes ACK) 537 7 [correct]		Attack Character: 1. Real source of attack, attack the client and server to establish a connection, a limited the client to send fewer messages, and as far as possible to hide the attack side; this is a c Client_attacks; 2. The same session, the attacker client kept send retransmission request message, the s	common feature o server that the m
Acknowledgement Header length: 4 Flags: 0x0010 (A window size: 465 Checksum: 0xd947 Options: (24 byt NOP	44 bytes ACK) 537 7 [correct] tes)		Attack Character: 1 Real source of attack, attack the client and server to establish a connection, a limited the client to send fewer messages, and as far as possible to hide the attack side; this is a c Client_attacks;	common feature o server that the m
Acknowledgement Header length: 4 Flags: 0x0010 (A window size: 465 Checksum: 0xd947 Options: (24 byt NOP Time stamp: ts NOP	44 bytes ACK) 537 7 [correct] tes) sval 94897, tsecr 60		Attack Character: 1. Real source of attack, attack the client and server to establish a connection, a limited the client to send fewer messages, and as far as possible to hide the attack side; this is a c Client_attacks; 2. The same session, the attacker client kept send retransmission request message, the transmission process have discarded, non-stop to the client retransmission "discarded" me	common feature o server that the me essage;
Acknowledgement Header length: 4 Flags: 0x0010 (A window size: 465 Checksum: 0xd947 Options: (24 byt NOP Time stamp: ts NOP SACK: 29443-30	44 bytes ACK) 537 7 [correct] tes) 5val 94897, tsecr 60 0845		 Attack Character: 1. Real source of attack, attack the client and server to establish a connection, a limited the client to send fewer messages, and as far as possible to hide the attack side; this is a client_attacks; 2. The same session, the attacker client kept send retransmission request message, the stransmission process have discarded, non-stop to the client retransmission "discarded" metals. The client IP is 118.250.201.68, the server IP is 222.240.187.37, packet capture analysis 	common feature or server that the m essage; sis can be seen a s
Acknowledgement Header length: 4 Flags: 0x0010 (A window size: 469 Checksum: 0xd947 Options: (24 byt NOP Time stamp: ts NOP SACK: 29443-30 left edge =	44 bytes ACK) 537 7 [correct] tes) 5val 94897, tsecr 60 0845 29443 (relative)		Attack Character: 1. Real source of attack, attack the client and server to establish a connection, a limited the client to send fewer messages, and as far as possible to hide the attack side; this is a c Client_attacks; 2. The same session, the attacker client kept send retransmission request message, the transmission process have discarded, non-stop to the client retransmission "discarded" me	common feature c server that the m essage; sis can be seen a s
Acknowledgement smi- Header length: 4 Flags: 0x0010 (A window size: 465 Checksum: 0xd947 Options: (24 byt NOP Time stamp: ts NOP SACK: 29443-30 left edge =	44 bytes ACK) 537 7 [correct] tes) 5val 94897, tsecr 60 0845 29443 (relative) = 30845 (relative)		 Attack Character: 1. Real source of attack, attack the client and server to establish a connection, a limited the client to send fewer messages, and as far as possible to hide the attack side; this is a client_attacks; 2. The same session, the attacker client kept send retransmission request message, the stransmission process have discarded, non-stop to the client retransmission "discarded" meta3. The client IP is 118.250.201.68, the server IP is 222.240.187.37, packet capture analyses 	common feature o server that the me essage; sis can be seen a s responds with a

Defense against TCP Retransmission Attack based on Session-checking

Defense Principle

Basic Defense Principle

Defense Principle of TCP Flood

Defense Principle of UDP Flood

Defense Principle of ICMP Flood

Defense Principle of DNS Flood

Defense Principle of TCP Connection Flood

Defense Principle of HTTPS Flood

Defense Principle of HTTP Flood

Anti-DDoS MSS

SSL-DoS Attack on SSL Server

	Source Address	Dest Address	Summary
	172.16.104.201	128.18.74.201	TCP: 2341 > https [SYN] Seq=0 Ack=0 Win=65535 Len=0 MSS=1460
	128.18.74.201	172.16.104.201	TCP: https > 2341 [SVN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1460
Client	Sever 172.16.104.201	128.18.74.201	TCP: 2341 > https [ACK] Seq=1 Ack=1 Win=65535 Len=0
	HTTPS 172.16.104.201	128.18.74.201	SSLv2: Client Hello
SYN SYN SYN ACK	128.18.74.201	172.16.104.201	TLS: Server Hello, Certificate, Server Hello Done
ACK	172.16.104.201	128.18.74.201	TLS: Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
	128.18.74.201	172.16.104.201	TLS: Change Cipher Spec, Certificate Request[Unreassembled Packet (incorrect TCP checksum)]
Client Hello	172.16.104.201	128.18.74.201	TLS: Encrypted Handshake Message
Server	128.18.74.201	172.16.104.201	TLS: Encrypted Handshake Message
	Certificate 172.16.104.201 Hello Done	128.18.74.201	TLS: Encrypted Handshake Message, Change Cipher Spec, Encrypted Handshake Message
	128.18.74.201	172.16.104.201	TLS: Change Cipher Spec, Server Hello[Unreassembled Packet (incorrect TCP checksum)]
Client Key Exchange Change Cipher Spec	172.16.104.201	128.18.74.201	TLS: Hello Request
Change	128.18.74.201	172.16.104.201	TLS: Encrypted Handshake Message
Change	172.16.104.201	128.18.74.201	TLS: Encrypted Handshake Message, Change Cipher Spec, Encrypted Handshake Message
Change Cipher Spec	128.18.74.201	172.16.104.201	TLS: Change Cipher Spec, Encrypted Handshake Message
Change	Cipher Spec 172.16.104.201	128.18.74.201	TLS: Encrypted Handshake Message
Change Cipher Spec	128.18.74.201	172.16.104.201	TLS: Encrypted Handshake Message
Change	Cipher Spec 172.16.104.201	128.18.74.201	TLS: Encrypted Handshake Message, Change Cipher Spec, Encrypted Handshake Message
	128.18.74.201	172.16.104.201	TLS: Change Cipher Spec, Encrypted Handshake Message
: · · · · · · · · · · · · · · · · · · ·	172.16.104.201	128.18.74.201	TLS: Encrypted Handshake Message
•	128.18.74.201	172.16.104.201	TLS: Encrypted Handshake Message
Change Cipher Spec	172.16.104.201	128.18.74.201	TLS: Encrypted Handshake Message, Change Cipher Spec, Encrypted Handshake Message
Change	128.18.74.201	172.16.104.201	TLS: Change Cipher Spec, Encrypted Handshake Message
	172.16.104.201	128.18.74.201	TLS: Encrypted Handshake Message
	128.18.74.201	172.16.104.201	TLS: Encrypted Handshake Message
	172.16.104.201	128.18.74.201	TLS: Encrypted Handshake Message, Change Cipher Spec, Encrypted Handshake Message
	128.18.74.201	172.16.104.201	TLS: Change Cipher Spec, Encrypted Handshake Message

Defense against SSL-DDoS

- Attack Character
 - Instead it exhausts the server resources from a single host requiring only a single TCP/IP socket. This attack is a Distributed Denial of Service (DDOS) by botnet.
 - A single server can perform between 150-300 handshakes per second. While a single client can request up to 1000 handshakes per second.
 - If the botnet is consist of 1,000 hosts, it's attack result is obvious. And because a single host's connections is few, this attack can evade detecting from network security devices.

• Defense Principle

- A legal host sets up a ssl session to transmit data, but a illegal host only set up session to exhaust SSL
 handshakes. Check session and put those source IPs whose session is illegal to blacklist.
- Limit the connection from IPs which doesn't exist in reputation list.

Defense Principle

Basic Defense Principle

Defense Principle of TCP Flood

Defense Principle of UDP Flood

Defense Principle of ICMP Flood

Defense Principle of DNS Flood

Defense Principle of TCP Connection Flood

Defense Principle of HTTPS Flood

Defense Principle of HTTP Flood

Anti-DDoS MSS

HTTP Flood—Client_attacks

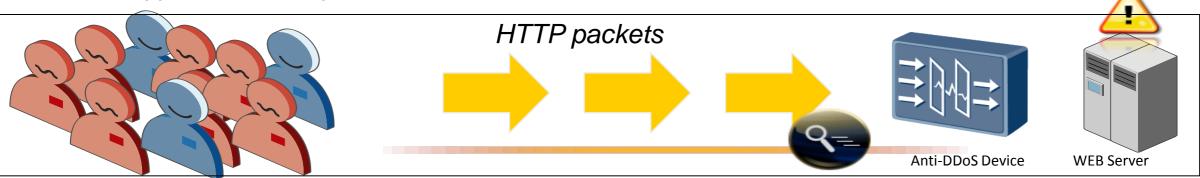
Source Ad 🔺	Dest Address	Summary	Length
1.197.127.162	210.14.67.43	TCP: 2646 > http [ACK] Seq=0 Ack=0 Win=63888 Len=0 TSV=83017 TSER=0	66
1.202.186.37	210.14.67.43	TCP: 56060 > http [ACK] Seq=0 Ack=0 Win=63877 Len=0	54
1.205.20.94	210.14.67.43	TCP: 13158 > http [RST, ACK] Seq=0 Ack=0 Win=0 Len=0	54
1.205.20.94	210.14.67.43	HTTP: GET //p57/ HTTP/1.1	1450
1.205.64.213	210.14.67.43	HTTP: GET //p57/ HTTP/1.1	1450
1.56.192.51	210.14.67.43	TCP: 1750 > http [SYN] Seq=0 Ack=0 Win=65535 Len=0 MSS=1440 WS=2	66
1.60.34.129	210.14.67.43	TCP: 12616 ≻ http [ACK] Seq=0 Ack=0 Win=46492 Len=0	54
1.60.85.79	210.14.67.43	TCP: 4777 > http [ACK] Seq=0 Ack=0 Win=65535 Len=0	54
1.61.40.89	210.14.67.43	TCP: 1380 > http [SYN] Seq=0 Ack=0 Win=65535 Len=0 MSS=1440	62
1.81.6.90	210.14.67.43	HTTP: GET //p57/ HTTP/1.1	1450
1.81.6.90	210.14.67.43	TCP: 1520 > http [SYN] Seq=0 Ack=0 Win=65535 Len=0 MSS=1440 WS=0	66
1.83.102.2	210.14.67.43	HTTP: GET //p57/ HTTP/1.1	1224
1.87.203.214	210.14.67.43	TCP: 64856 > http [SYN] Seq=0 Ack=0 Win=8192 Len=0 MSS=1440	62
101.71.2.68	210.14.67.43	TCP: 59970 > http [ACK] Seq=0 Ack=0 Win=65535 Len=0	54
110.17.67.31	210.14.67.43	TCP: 2058 > http [ACK] Seq=0 Ack=0 Win=53919 Len=0	54
110.18.4.115	210.14.67.43	TCP: 57169 > http [ACK] Seq=0 Ack=0 Win=16469 Len=0	54
110.185.170.60	210.14.67.43	TCP: 2565 > http [RST, ACK] Seq=0 Ack=0 Win=0 Len=0	54
110.187.147.249	210.14.67.43	HTTP: GET //p57/ HTTP/1.1	1450
110.244.97.154	210.14.67.43	HTTP: GET //p57/ HTTP/1.1	1248
110.245.203.105	210.14.67.43	HTTP: GET //p57/ HTTP/1.1	1450

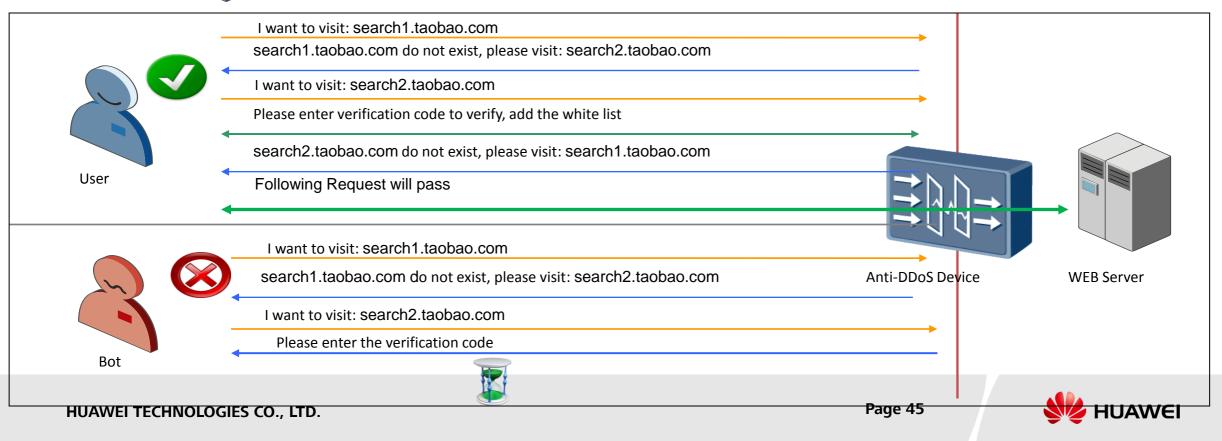
Attack Character: Attack Character: This attack is a kind of http flood by botnet using a lot of open proxies. Sessions from single proxy are few to avoid detecting from security devices. The attack result is obvious when the attacked URI exhausts lots of CPU capability. "P57" directory is the attack aim.

Defense Principle: Redirection check code is used to defend against CC attack. Attacks are launched by botnet. As a result, there is no response to authentication requests and access traffic fails to be transparently transmitted to the server. The cleaning device reports client_attacks log.

CC Attack—HTTP Flood by Botnet using Proxy

Open Proxy

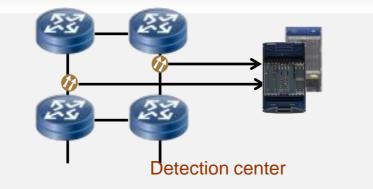

Source Address		Summary	
200.65.127.161	192.168.1.57	HTTP: HTTP/1.1 400 Bad Request (text/html)	
200.65.127.161	192.168.1.57	TCP: 3128 > 3553 [SYN, ACK] Seq=0 Ack=1 Win=8760 Len=0	Attack destination
192.168.1.57	200.65.127.161	TCP: 3118 > http [RST, ACK] Seq=308 Ack=437 Win=0 Lea=0	~
192.168.1.57	200.65.127.161	TCP: 3553 > 3128 [ACK] Seq=1 Ack=1 Win=6559 Len=0	
192.168.1.57	200.65.127.161	HTTP: GET http://www.horseb.org HTTP/t.1	
203.178.133.3	192.168.1.57	TCP: 3127 > 3558 [ACK] Seq=1 Ack=307 Win=6432 Len=0	
200.65.127.161	192.168.1.57	TCP: 3128 > 3483 [ACK] Seq=1 Ack=307 Win=16078 Len=0	
200.65.127.161	192.168.1.57	HTTP: HTTP/1.1 400 Bad Request (text/html)	
200.65.127.161	192.168.1.57	TCP: 3128 > 3483 [FIN, ACK] Seq=437 Ack=307 Win=16384	
200.65.127.161	192.168.1.57	TCP: http > 3484 [ACK] Seq=1 Ack=307 Win=16078 Len=0	The target can't
192.168.1.57	200.65.127.161	TCP: 3483 > 3128 [ACK] Seq=307 Ack=438 Win=65099 Len=0	Ũ
200.65.127.161	192.168.1.57	HTTP: HTTP/1.1 400 Bad Request (text/html)	response now.
200.65.127.161	192.168.1.57	TCP: http > 3484 [FIN, ACK] Seq=437 Ack=307 Win=16384 Le	
192.168.1.57	200.65.127.161	TCP: 3484 > http [ACK] Seq=307 Ack=438 Win=65099 Len=0	
192.168.1.57	203.178.133.3	TCP: 3610 > 3127 [SVN] Seq=0 Ack=0 Win=65535 Len=0 MSS	
200.65.127.161	192.168.1.57	TCP: http > 3556 [SYN, ACK] Seq=0 Ack=1 Win=8760 Len=0	
192.168.1.57	200.65.127.161	TCP: 3556 > http [ACK] Seq=1 Ack=1 Win=65535 Len=0	
192.168.1.57	200.65.127.161	HTTP: GET http://www.horseb.org HTTP/1.1	
203.178.133.2	192.168.1.57	TCP: 3127 > 3561 [ACK] Seq=1 Ack=307 Win=6432 Len=0	
200.65.127.161	192.168.1.57	TCP: 3128 > 3840 [ACK] Seq=1 Ack=307 Win=16078 Len=0	
200.65.127.161	192.168.1.57	HTTP: HTTP/1.1 400 Bad Request (text/html)	


Attack Character: This attack is a kind of http flood by botnet using a lot of open proxies. Sessions from single proxy are few to avoid detecting from security devices. The attack result is obvious when the attacked URI exhausts lots of CPU capability.

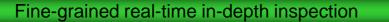
Defense Principle: Redirection check code is used to defend against CC attack. Attacks are launched by botnet. As a result, there is no response to authentication requests and access traffic fails to be transparently transmitted to the server. The cleaning device reports client_attacks log.

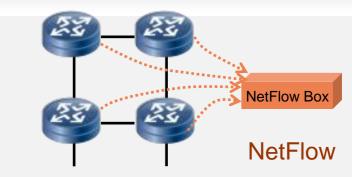
Defense against HTTP Flood based on Application Layer-based Source Authentication

Contents


Oľ

Detecting center ATIC mgmt.


Cleaning


center

The detecting center implements the detecting policies delivered by the ATIC management center to identify abnormal traffic and sends the detecting results to the ATIC management center.

- Provides detection at fine-grained, near real-time scale
- Can detect application-layer attacks, but cannot detect routing information such as AS and next hop information
- Provides highly accurate detection, in-depth packet detection, signature matching, and session table establishment
- Centrally deployed, and difficult to scale
- Off-line deployment has no impact on network devices

- Provides detection at medium-grained time scale and introduces noticeable delay
- Supports the collection and analysis of septet information, including routing information, but cannot detect application-layer attacks
- Provides low accurate detection based on sampling septet information
- Easy to deploy and scale
- Requires network devices to send NetFlow traffic to the analysis devices and has some impact on network devices

Basic and coarse-grained network-wide traffic detection

Detecting center Cleaning center ATIC mgmt. center

Cleaning center

The cleaning center receives instructions from the ATIC management center, delivers traffic diversion policies, and implement traffic cleaning. The cleaning center provides accurate protection through layered protection procedures to prevent malformed packet, DoS, and DDoS attacks with low latency.

Seven-layer filtering against attacks of all types

Special control packet filtering IP Option Malformed packet filtering ICMP unreachable message LAND attack Tracert Fraggle attack Packets with IP Source Routing option Winnuke Packets with IP Ping of Death Timestamp option Tear Drop Packets with IP Record Invalid TCP flag attack Route option Super large ICMP attack

Source validity authentication **TCP Fragment Flood** SYN Flood SYN-ACK Flood ICMP redirect message HTTP Get Flood **HTTP Post Flood** HTTPS Flood **DNS Query Flood DNS Reply Flood**

SIP Flood

Session-based cleaning

TCP Flood UDP Flood ICMP Flood **Connection Flood** Signature

recognition

UDP Flood

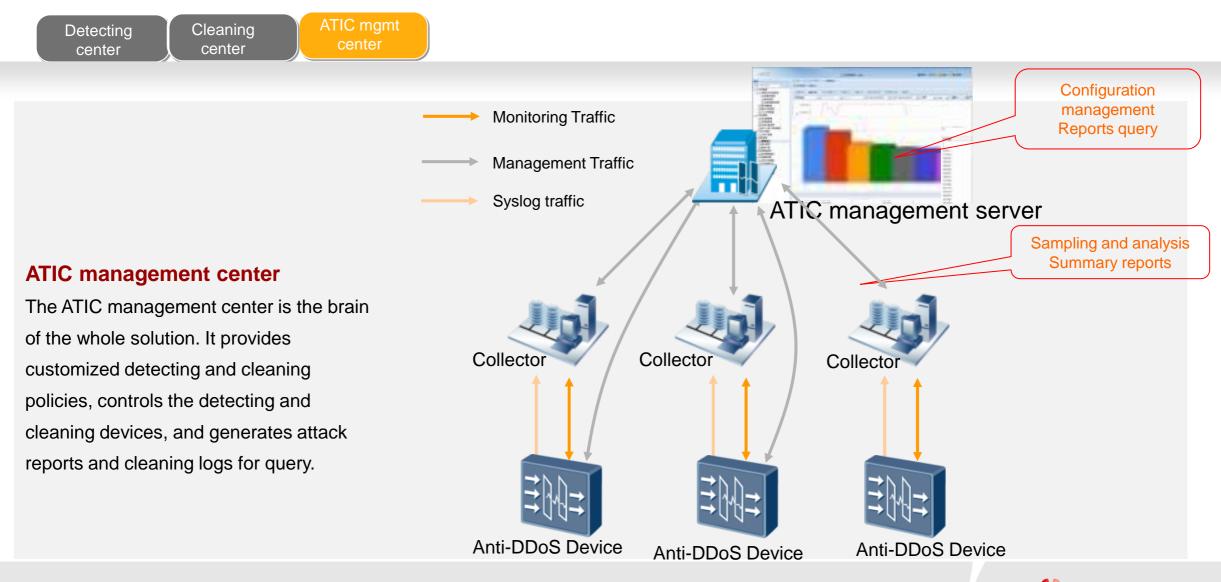
ICMP Flood

HTTP Get Flood

HTTP Post Flood

CC

Traffic shaping


Avoid congestion to the target **UDP Fragment Flood**

Static filtering

Whitelist

Blacklist

Layer operation mode—layer cleaning

Pipe-line level Anti-DDoS

Provider can deploy netflow detection+ E8000E-X cleaning in MAN or upper level , this can not only protect link-layer safe for provider but also give extra MSS

>Defense police is default configure and not related to application level;

➤report function ;

≻Charging mode:

- •A: charging on defense times, on demand cleaning mode;
- •B: charging on month, providing real-time defense

Currently, Turkey telecom, United Arab Emirates DU have been the customers of HUAWEI Anti-DDoS MSS solution

Shared-link layer Anti-DDo8

Provider deploy E8000E-X in Metro net using static traffic diverses

Customized defense policy based on application, and production detailed defense in application level;

Shared cleaning device and cleaning bandwidth, in this situation, cleaning device share MAN access device;

>Report function;

>Charging mode: XX\$/mode/100 Mbps , or XX\$/ month/ 100Mbs ;

➤Target user : SME (Small and medium enterprises, like NSP、 IDC;

A Mode

 Charging on cleaning times, providing on demand cleaning mode, three modes : manual cleaning, auto cleaning, interactive cleaning;
 Charging mode: XX\$/IP/each cleaning or XX\$/100Mbps/ IP/each cleaning

>Target user: SME (Small and medium enterprises)

B Mode

➤Charge rated fee;

Customized defense policy, providing auto cleaning;

Charging mode: XX\$/month/per IP, or XX\$/ month/ 100Mbs;
Target user: Key accounts,like IDC,NSP;

Owned link-layer Anti-DDoS

ovide: deploy E1000E-D in customer's access point of metro net by using in-line static traffic diversion mode, This can provide fined application level defense by ustomized defense policy;

Providing fined application level defense by customized defense policy ;
 Owned cleaning device and cleaning bandwidth, detection and cleaning device can be deployed in Provider side of customer's network;

Report function ;

>Charging mode : XX\$/month ;

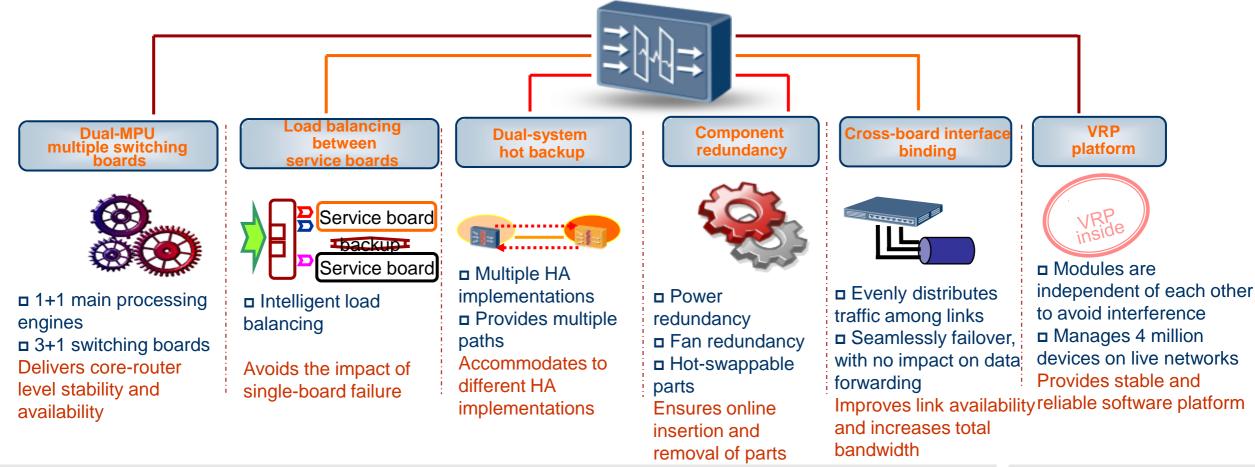
➤Target user : Key accounts, result is that provider take care of the security issue for Key accounts, for example, customer sold out their Anti-DDoS security to provider, such as bank ;

Provides Up to 200 Gbit/s Performance

◆Industry-leading architecture: Built on the network processor (NP), multi-core CPU, and distributed architecture, breaks the performance bottleneck, and provides online capacity expansion capability.

◆ **High performance:** Delivers a maximum of 160 Gbit/s processing speed per chassis, which is an industry-leading level and can cope with large scale attacks

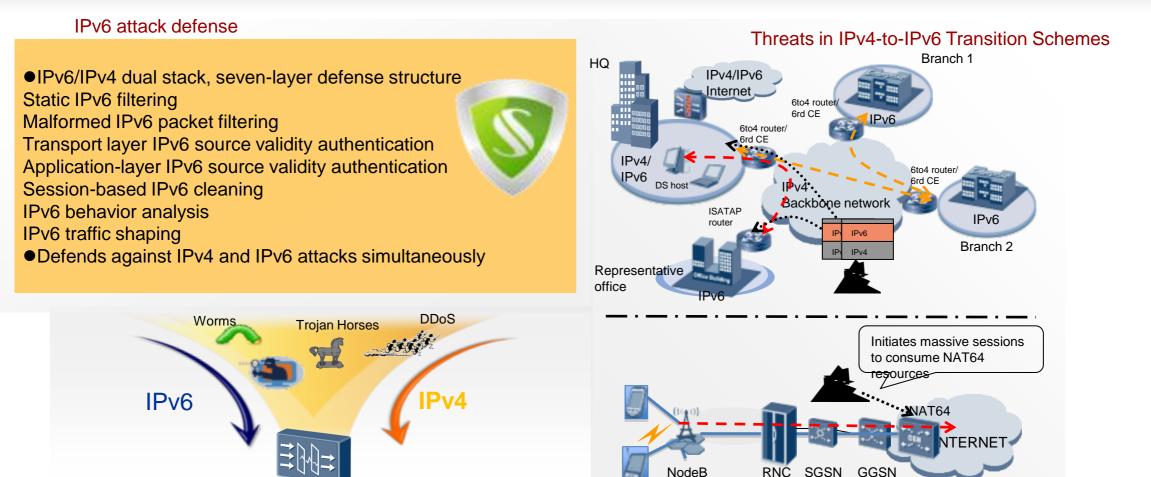
◆ **High capacity:** Supports differentiated protection for a maximum of 2000 Zones; provides finegrained protection for 10,000 IP AMS1500 resses and common protection for 1,000,000 IP AMS1500 resses



99.9999% Availability to Ensure Service Continuity

Delivers the industry's longest MTBF: 500,0000 hours

Delivers 500,000 hours of MTBF and 99.9999% availability with less than 1 minute of down time each year and less than 0.1 second failover time, ensuring service continuity



IPv6 Attack Defense to Secure IPv4-to-IPv6 Transition

Full-scale IPv6 attack defense

Detecting and Cleaning Within Seconds

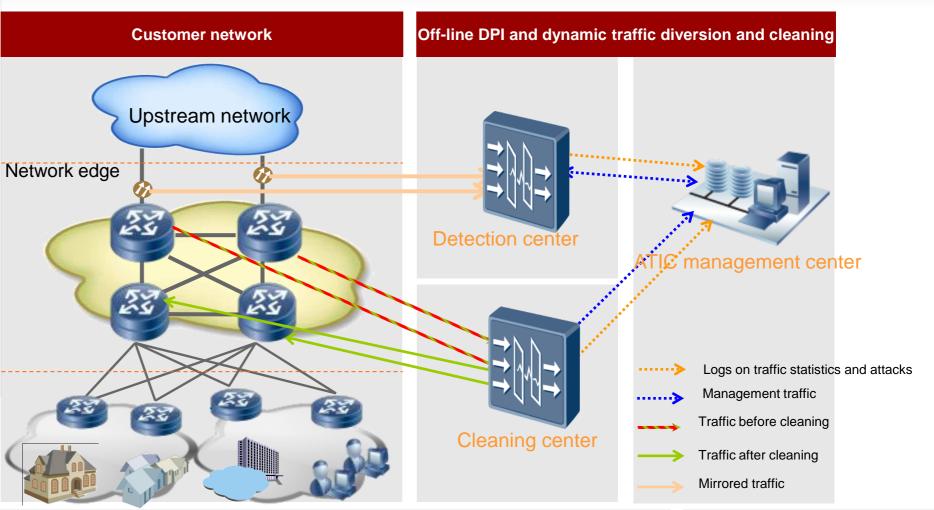
High	High	High detection	Rapid
performance	availability	, rate)	response

	DPI technology	Conventional NetFlow technology
Detecting speed	Performs DPI packet by packet, detects attacks within seconds	Performs flow-based and interface-specific inspection; detects attacks within minutes or tens of minutes
Response speed	Leverages session and detection information synchronization; responds to attacks within seconds	Diverts traffic minutes or tens of minutes after attacks

Contents

Detection and cleaning

Suitable for refined defense on large networks


Detection and cleaning

In off-line DPI deployment, the DPI devices analyze the traffic of the entire network, automatically deliver traffic diversion policies to the core routing devices to divert the traffic for cleaning upon detecting abnormal traffic, and provide reports on attack events and cleaning results.

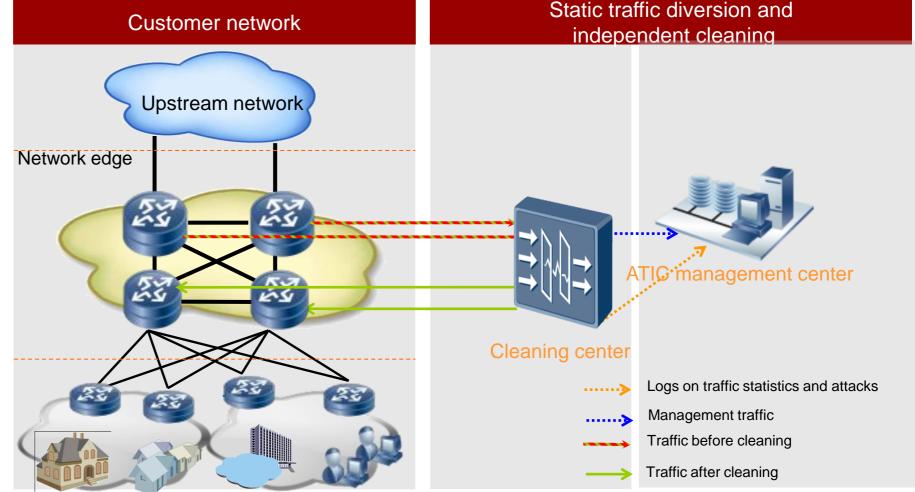
During deployment:

Detecting devices can be deployed outside of the cleaning devices to detect all traffic;

Detecting devices can be deployed inside of the cleaning devices to detect traffic in smaller scale to reduce costs.

Independent Cleaning

Suitable for refined defense on small and medium-sized networks

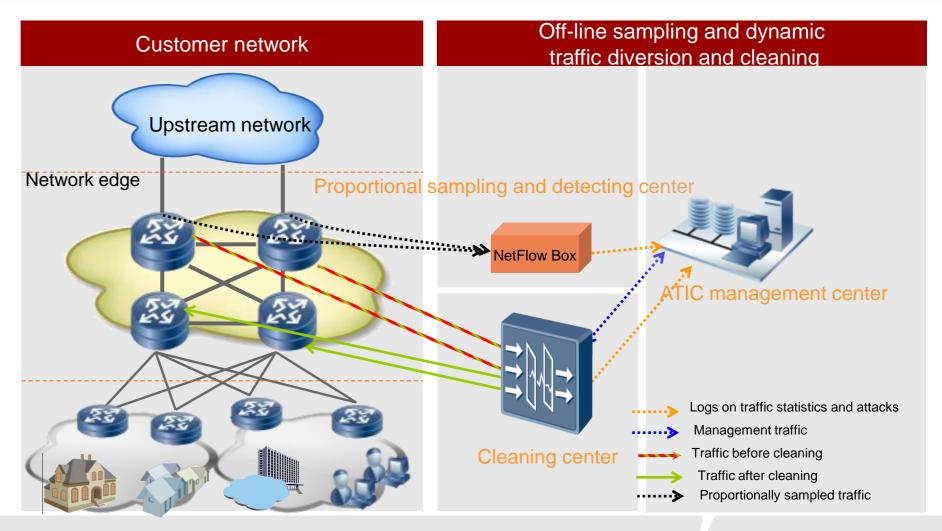

Independent cleaning

Detect specified traffic based on static rules and dynamically learn the normal traffic baseline to prevent abnormal traffic.

Independent cleaning supports the following two deployment modes:

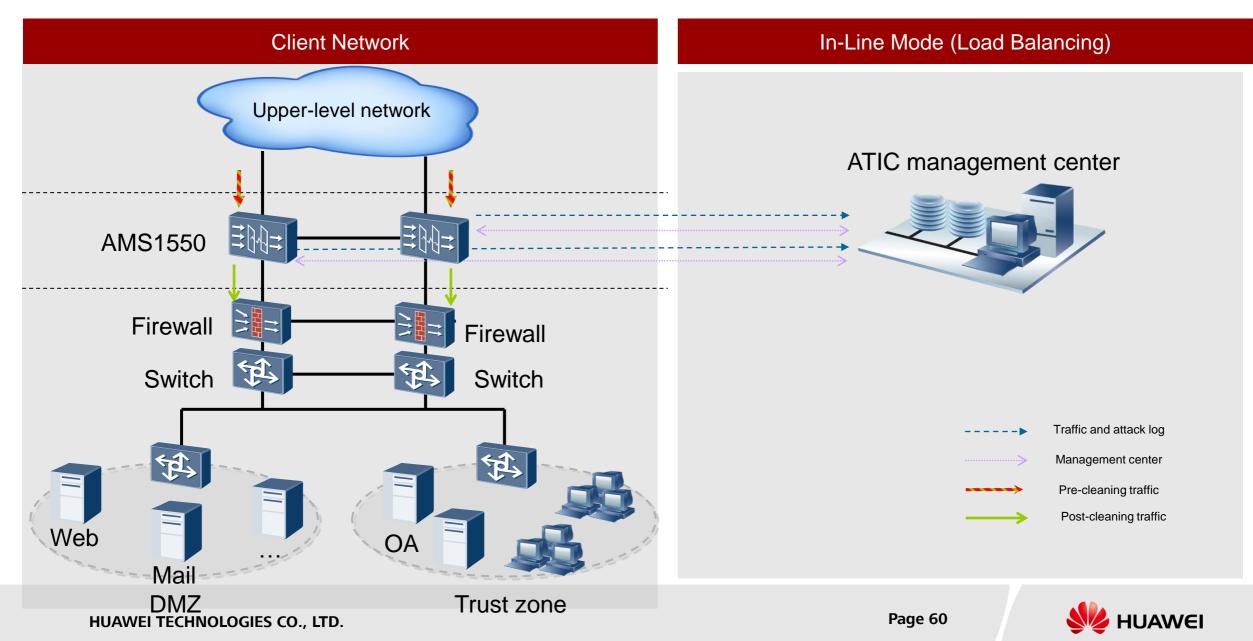
1) In-line deployment: All traffic goes through the cleaning devices to be cleaned. In-line deployment inspects traffic in wider range, but requires highperformance hardware and is expensive.

2) Off-line deployment provides refined protection for specific customers. Off-line deployment is cheap to deploy, but inspects traffic in a smaller range.

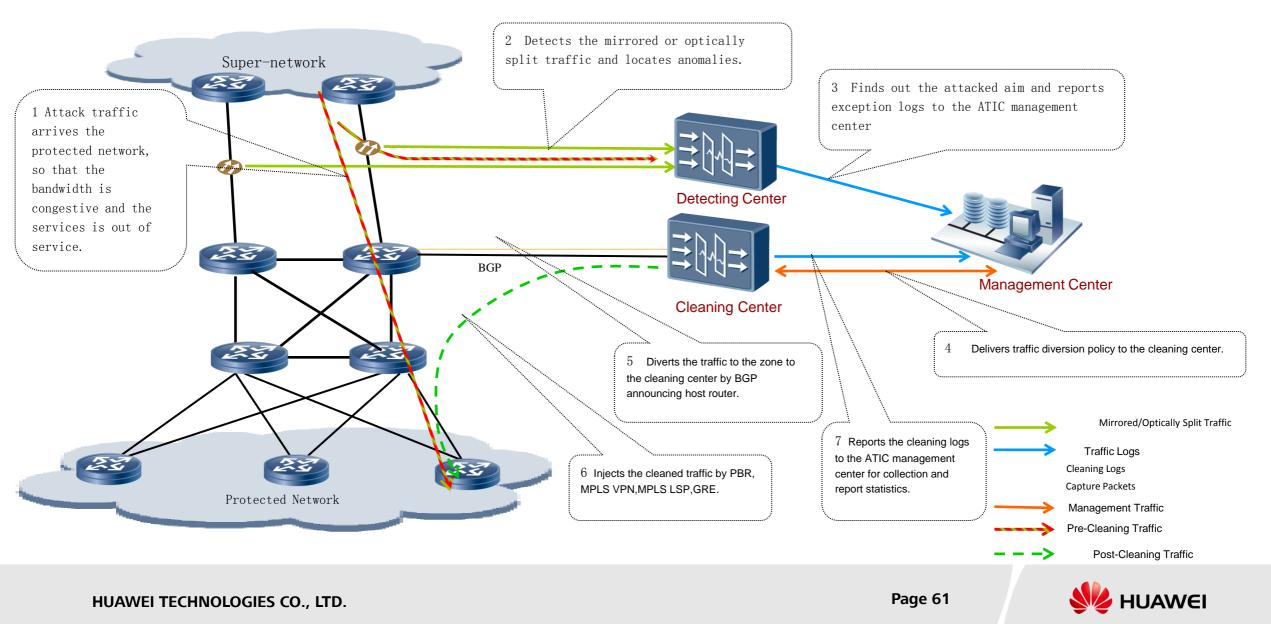

Proportional Sampling and Cleaning

Suitable for network-wide traffic cleaning

Proportional sampling and cleaning


In off-line deployment, NetFlow devices sample traffic for analysis, automatically deliver traffic diversion policies to the core routing devices to divert traffic to the cleaning center for cleaning upon detecting abnormal traffic, and provide reports on attacks and cleaning results.

Pros: Low deployment cost Cons: Slow response, low detection rate in applicationlayer attacks



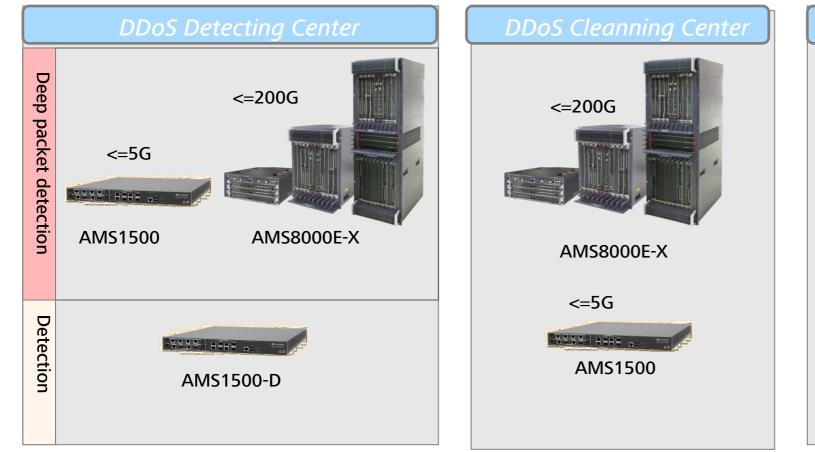
Load Balancing Cleaning Mode

Processing Flow of Anti-DDoS Solution

---Using Dynamic Traffic Diversion in Off-Line Mode as an Example

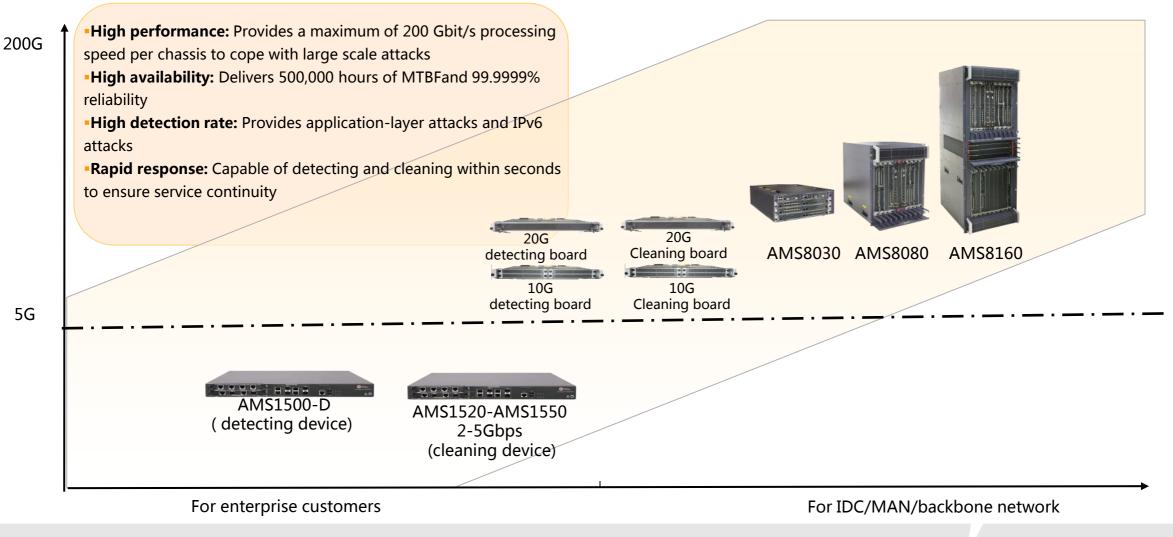
Flexible Deployments to Accommodate to Your Needs

Low-cost deployment


Cheap to deploy; capable of detecting and preventing flood and application-layer attacks in fine-grained scale and learning traffic model; rapid in response to attacks and causing small delay.

Cons:

Static protection, suitable for only small networks.


Huawei Anti-DDoS Operation solution components

Huawei Anti-DDoS Product

Zapraszamy do Huawei Demo Truck

ORAZ NA PREZENTACJE:

• Poniedziałek 14:55 – 16:20

Protokół IETF TRILL – Donald E. Eastlake 3rd

• Wtorek 12:30 – 13:15

DataCenter Interconnect – Sam Aldrin

• Wtorek 14:15 – 14:45

Budowa przełączników modularnych – Piotr Głaska

