
Juozas “Joe” Kaziukėnas

http://juokaz.com / juozas@juokaz.com / @juokaz

 Juozas Kaziukėnas, Lithuanian

 You can call me Joe

 ~4 years in Edinburgh, UK

 CEO of Web Species Ltd

 Occasional open source developer

 Conferences speaker

 More info in http://juokaz.com

 Tweet me @juokaz

http://webspecies.co.uk/
http://juokaz.com/
http://twitter.com/juokaz
http://twitter.com/juokaz

 Reliability

 Relational model

 Transactions

 SQL

 Integration

 Atomicity

 Consistency

 Isolation

 Durability

 Vertical scalability
 Hardware (memory) limits

 Horizontal scalability
 Joins

 Transactions

 Consistency is a major bottleneck

Consistency

Availability
Partition
tolerance

* http://en.wikipedia.org/wiki/CAP_theorem

http://en.wikipedia.org/wiki/CAP_theorem

 Data driven projects

 A lot of data

 Real-time analysis

 Google BigTable and Amazon Dynamo

 Acid:
 Atomicity

 Consistency

 Isolation

 Durability

 Hard to implement in distributed systems

 Eventual consistency

 Schema-less

 Types
 Key Value

 Dynamo, Membase, Riak, Redis

 Document
 MongoDB and CouchDB

 Graph
 Neo4j, FlockDB

 Column
 Big Table, Cassandra, Hbase

 Understand
 Business model

 Use cases

 Size

 Requirements

 Do not over-engineer, it will fail anyway

 Do not lock-in

 Dynamic queries
 Index data

 Map/Reduce

 Key lookups

 Created by Google

 Process data using mappers and reducers

 Can be distributed on any amount of machines

 Popular to use with Hadoop

 Distributed systems are tricky

 Databases are buggy…

 Foursquare, Tumblr, Twitter and more publicly failed

 Outage

 Data loss

 Consistency problem

NoSQL > SQL

 Horizontal scalability

 High write OR read
throughput

 Stores any data

 No partial reads

 No security

 No relational model

 Only stores data, no
reporting, aggregating

NoSQL < SQL

 Distribution model
 Dynamo like

 Master-Master

 Master-Slave

 Query model
 Map/Reduce

 Dynamic queries

 Disk structure
 How database is persisted on a disk

 In-memory database (needs to fit in memory*)
 Eventual consistency in disk

 Master-slave replication

 Key-value, but also sets, lists and hashes

 Supports transactions

 Good for expiring and/or rapidly changing data

 Master/Slave replication

 Sharding

 Dynamic queries
 Using JavaScript expressions

 Update-in-place with atomic operations

 Can store files

 For anything MySQL would be used for, but schema-
less is required

 Used to be unreliable on a single machine

 Bi-directional replication. Master-master

 Versioning and conflict detection

 Always consistent

 Needs compacting, not good for rapid changing data

 Map/Reduce as query mechanism

 Real-time data updates feed (_changes)

 Document validation

 Best for offline systems. Great for content stores

 Faster writes than reads

 Query by column

 Secondary indices

 Map/reduce possible with Hadoop

 Complex, Java system

 Used to store a lot of data

 Map/Reduce with Hadoop

 Random access

 Real-time read/write access

 Graph database

 Master-slave

 Path finding

 Optimized for reads

 For complicated interconnected data

 Measure
 Memory

 Disk I/O

 CPU utilization

 Don’t try to make a database do things it wasn’t
designed for

 Create a non-relational model

 Denormalize

Keep in touch
http://juokaz.com

juozas@juokaz.com

twitter: @juokaz

http://juokaz.com/
mailto:juozas@juokaz.com
mailto:juozas@juokaz.com
http://twitter.com/juokaz
http://twitter.com/juokaz

