
Juozas “Joe” Kaziukėnas

http://juokaz.com / juozas@juokaz.com / @juokaz

 Juozas Kaziukėnas, Lithuanian

 You can call me Joe

 ~4 years in Edinburgh, UK

 CEO of Web Species Ltd

 Occasional open source developer

 Conferences speaker

 More info in http://juokaz.com

 Tweet me @juokaz

http://webspecies.co.uk/
http://juokaz.com/
http://twitter.com/juokaz
http://twitter.com/juokaz

 Reliability

 Relational model

 Transactions

 SQL

 Integration

 Atomicity

 Consistency

 Isolation

 Durability

 Vertical scalability
 Hardware (memory) limits

 Horizontal scalability
 Joins

 Transactions

 Consistency is a major bottleneck

Consistency

Availability
Partition
tolerance

* http://en.wikipedia.org/wiki/CAP_theorem

http://en.wikipedia.org/wiki/CAP_theorem

 Data driven projects

 A lot of data

 Real-time analysis

 Google BigTable and Amazon Dynamo

 Acid:
 Atomicity

 Consistency

 Isolation

 Durability

 Hard to implement in distributed systems

 Eventual consistency

 Schema-less

 Types
 Key Value

 Dynamo, Membase, Riak, Redis

 Document
 MongoDB and CouchDB

 Graph
 Neo4j, FlockDB

 Column
 Big Table, Cassandra, Hbase

 Understand
 Business model

 Use cases

 Size

 Requirements

 Do not over-engineer, it will fail anyway

 Do not lock-in

 Dynamic queries
 Index data

 Map/Reduce

 Key lookups

 Created by Google

 Process data using mappers and reducers

 Can be distributed on any amount of machines

 Popular to use with Hadoop

 Distributed systems are tricky

 Databases are buggy…

 Foursquare, Tumblr, Twitter and more publicly failed

 Outage

 Data loss

 Consistency problem

NoSQL > SQL

 Horizontal scalability

 High write OR read
throughput

 Stores any data

 No partial reads

 No security

 No relational model

 Only stores data, no
reporting, aggregating

NoSQL < SQL

 Distribution model
 Dynamo like

 Master-Master

 Master-Slave

 Query model
 Map/Reduce

 Dynamic queries

 Disk structure
 How database is persisted on a disk

 In-memory database (needs to fit in memory*)
 Eventual consistency in disk

 Master-slave replication

 Key-value, but also sets, lists and hashes

 Supports transactions

 Good for expiring and/or rapidly changing data

 Master/Slave replication

 Sharding

 Dynamic queries
 Using JavaScript expressions

 Update-in-place with atomic operations

 Can store files

 For anything MySQL would be used for, but schema-
less is required

 Used to be unreliable on a single machine

 Bi-directional replication. Master-master

 Versioning and conflict detection

 Always consistent

 Needs compacting, not good for rapid changing data

 Map/Reduce as query mechanism

 Real-time data updates feed (_changes)

 Document validation

 Best for offline systems. Great for content stores

 Faster writes than reads

 Query by column

 Secondary indices

 Map/reduce possible with Hadoop

 Complex, Java system

 Used to store a lot of data

 Map/Reduce with Hadoop

 Random access

 Real-time read/write access

 Graph database

 Master-slave

 Path finding

 Optimized for reads

 For complicated interconnected data

 Measure
 Memory

 Disk I/O

 CPU utilization

 Don’t try to make a database do things it wasn’t
designed for

 Create a non-relational model

 Denormalize

Keep in touch
http://juokaz.com

juozas@juokaz.com

twitter: @juokaz

http://juokaz.com/
mailto:juozas@juokaz.com
mailto:juozas@juokaz.com
http://twitter.com/juokaz
http://twitter.com/juokaz

